论文标题
ActiverMap:用于主动映射和计划的辐射字段
ActiveRMAP: Radiance Field for Active Mapping And Planning
论文作者
论文摘要
可以通过离线/在线映射方法来实现来自2D图像的场景的高质量3D重建。在本文中,我们从隐式表示的角度探索了主动映射,这些映射最近在各种应用中产生了令人信服的结果。最受欢迎的隐式表示之一 - 神经辐射场(NERF),首先使用多层感知器展示了逼真的渲染结果,并具有有希望的离线3D重建作为辐射场的副产品。最近,研究人员还将这种隐性表示形式应用于在线重建和本地化(即隐式SLAM系统)。但是,关于使用隐式表示进行主动视力任务的研究仍然非常有限。在本文中,我们特别有兴趣将神经光辉领域应用于主动映射和计划问题,这些问题是在活动系统中紧密耦合的任务。我们首次使用Radiance字段表示形式提出了仅使用RGB主动的视觉框架,以在线方式进行活跃的3D重建和计划。具体而言,我们将此联合任务提出为迭代双阶段优化问题,在此我们为辐射场字段表示和路径计划做出优化。实验结果表明,与其他离线方法相比,所提出的方法可以实现竞争结果,并且使用NERF胜过主动重建方法。
A high-quality 3D reconstruction of a scene from a collection of 2D images can be achieved through offline/online mapping methods. In this paper, we explore active mapping from the perspective of implicit representations, which have recently produced compelling results in a variety of applications. One of the most popular implicit representations - Neural Radiance Field (NeRF), first demonstrated photorealistic rendering results using multi-layer perceptrons, with promising offline 3D reconstruction as a by-product of the radiance field. More recently, researchers also applied this implicit representation for online reconstruction and localization (i.e. implicit SLAM systems). However, the study on using implicit representation for active vision tasks is still very limited. In this paper, we are particularly interested in applying the neural radiance field for active mapping and planning problems, which are closely coupled tasks in an active system. We, for the first time, present an RGB-only active vision framework using radiance field representation for active 3D reconstruction and planning in an online manner. Specifically, we formulate this joint task as an iterative dual-stage optimization problem, where we alternatively optimize for the radiance field representation and path planning. Experimental results suggest that the proposed method achieves competitive results compared to other offline methods and outperforms active reconstruction methods using NeRFs.