论文标题

迈向通用吉布斯常数

Towards a Universal Gibbs Constant

论文作者

Cullinan, John, Antu, Santanu

论文摘要

在本文中,我们建立在\ cite {kaber}的工作的基础上,其中表明gegenbauer多项式(GP)的单参数家族在跳跃不连续性时表现出Gibbs现象。我们表明,一般性拉瓜多项式(GLP)的单参数家族也表现出Gibbs现象。在许多差异中,一个主要的是,GLP在$ \ r $的非紧凑子集上是正交的,而GP则是$ [ - 1,1] $的正交。我们的策略遵循\ cite {kaber}的策略,我们使用完全基本的方法来得出我们的结果。作为特殊情况,我们表明,Hermite多项式也具有Gibbs现象。我们以一个数字示例结束,该示例表现出与GLP的特殊值的收敛速率和猜想的身份。

In this paper we build on the work of \cite{kaber} where it was shown that the one-parameter family of Gegenbauer Polynomials (GP) exhibit a Gibbs Phenomenon at a jump discontinuity. We show that the one-parameter family of Generalized Laguerre Polynomials (GLP) also exhibit a Gibbs Phenomenon. Among many differences, a major one is that the GLP are orthogonal on a non-compact subset of $\R$, while the GP are orthogonal on $[-1,1]$. Our strategy follows that of \cite{kaber} and we use entirely elementary methods to arrive at our result. As a special case we show that the Hermite Polynomials also possess a Gibbs Phenomenon. We conclude with a numerical example exhibiting the rate of convergence to the Gibbs constant and a conjectured identity for special values of the GLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源