论文标题

对资源受限的边缘设备的事件触发的分散联合学习

Event-Triggered Decentralized Federated Learning over Resource-Constrained Edge Devices

论文作者

Zehtabi, Shahryar, Hosseinalipour, Seyyedali, Brinton, Christopher G.

论文摘要

联合学习(FL)是一种用于分布式机器学习的技术(ML),在该技术中,边缘设备在其各个数据集上进行本地模型培训。在传统的FL算法中,Edge的训练有素的模型会定期发送到中央服务器进行聚合,并利用星形拓扑作为基础通信图。但是,假设对中央协调员的访问并不总是实用的,例如在临时无线网络设置中。在本文中,我们为完全分散的FL开发了一种新颖的方法,除了本地培训外,设备还通过合作共识形成进行模型聚集,并与他们的单跳邻居在分散的基础物理网络上进行。我们通过在设备之间引入异步,事件触发的通信来进一步消除了对定时协调员的需求。为了解决FL中固有的资源异质性挑战,我们定义了每个设备的个性化触发条件,这些设备权衡了本地模型参数的变化与可用本地资源。从理论上讲,我们的方法论在$ o {(\ frac {\ ln {k}}} {\ sqrt {k}}} $率的标准假设下,分布式学习和共识文献的标准假设下,我们的方法论会收敛到全球最佳学习模型。我们随后的数值评估表明,与现有的分散FL基准相比,我们的方法论可以在收敛速度和/或通信节省方面得到显着改善。

Federated learning (FL) is a technique for distributed machine learning (ML), in which edge devices carry out local model training on their individual datasets. In traditional FL algorithms, trained models at the edge are periodically sent to a central server for aggregation, utilizing a star topology as the underlying communication graph. However, assuming access to a central coordinator is not always practical, e.g., in ad hoc wireless network settings. In this paper, we develop a novel methodology for fully decentralized FL, where in addition to local training, devices conduct model aggregation via cooperative consensus formation with their one-hop neighbors over the decentralized underlying physical network. We further eliminate the need for a timing coordinator by introducing asynchronous, event-triggered communications among the devices. In doing so, to account for the inherent resource heterogeneity challenges in FL, we define personalized communication triggering conditions at each device that weigh the change in local model parameters against the available local resources. We theoretically demonstrate that our methodology converges to the globally optimal learning model at a $O{(\frac{\ln{k}}{\sqrt{k}})}$ rate under standard assumptions in distributed learning and consensus literature. Our subsequent numerical evaluations demonstrate that our methodology obtains substantial improvements in convergence speed and/or communication savings compared with existing decentralized FL baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源