论文标题

安全控制和学习使用广义行动州长

Safe Control and Learning Using the Generalized Action Governor

论文作者

Li, Nan, Li, Yutong, Kolmanovsky, Ilya, Girard, Anouck, Tseng, H. Eric, Filev, Dimitar

论文摘要

本文介绍了一个基于广义行动总督(AG)的安全控制和学习的一般框架。 AG是一种具有严格处理规定的安全限制能力的名义闭环系统的监督计划。在本文的第一部分中,我们提出了广义AG方法,并在一般环境中分析其关键属性。然后,我们介绍了量身定制的AG设计方法,这些方法从线性和离散系统的广义方法中得出。之后,我们讨论了广义AG的应用来促进安全的在线学习,该学习旨在使用实时数据安全地发展控制参数,以增强不确定系统中的控制性能。我们分别基于加强学习和基于数据驱动的Koopman操作员的控制与广义AG集成以示例该应用程序,分别提出了两种安全学习算法。最后,我们用数字示例说明了这些发展。

This article introduces a general framework for safe control and learning based on the generalized action governor (AG). The AG is a supervisory scheme for augmenting a nominal closed-loop system with the ability of strictly handling prescribed safety constraints. In the first part of this article, we present a generalized AG methodology and analyze its key properties in a general setting. Then, we introduce tailored AG design approaches derived from the generalized methodology for linear and discrete systems. Afterward, we discuss the application of the generalized AG to facilitate safe online learning, which aims at safely evolving control parameters using real-time data to enhance control performance in uncertain systems. We present two safe learning algorithms based on, respectively, reinforcement learning and data-driven Koopman operator-based control integrated with the generalized AG to exemplify this application. Finally, we illustrate the developments with a numerical example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源