论文标题

用水蒸气数据以高频跟踪阿尔玛系统温度

Tracking ALMA System Temperature with Water Vapor Data at High Frequency

论文作者

He, Hao, Dent, William R. F., Wilson, Christine

论文摘要

阿尔玛天文台现在正在将更多关注的重点放在高频观测上(275-950 GHz的频率)。但是,高频观察通常会遭受大气不透明度的快速变化,这直接影响系统温度$ t_ {sys} $。当前的观察结果每隔几分钟进行一次离散的大气校准(ATM-CALS),高频观察每小时发生10-20次,每小时发生30-40秒。为了获得更准确的通量测量并减少大气校准的数量(ATM-CALS),使用测量集中的现有数据不断提出了一种监视$ t_ {sys} $的新方法。在这项工作中,我们演示了使用水蒸气辐射计(WVR)数据连续跟踪$ t_ {sys} $的可行性。我们发现使用传统方法测量的$ t_ {sys} $与$ t_ {sys} $根据WVR数据进行了$ t_ {sys} $之间的紧密线性相关性,散布为0.5-3%。尽管线性关系的确切形式在不同的数据集和光谱窗口之间有所不同,但我们可以使用少量离散的$ t_ {sys} $测量来适应线性关系,并使用这种启发式关系来衍生每10秒$ t_ {sys} $。此外,我们使用微波(ATM)建模的大气传输成功地重现了观察到的相关性,并演示了一种更通用方法的可行性,以直接从建模中直接得出$ t_ {sys} $。我们将启发式拟合中的半连续$ t_ {sys} $应用于从频段7到频段10的一些数据集,并比较使用这些方法测量的通量。我们发现离散和连续的$ t_ {sys} $方法为我们提供了一致的通量测量,差异高达5%。此外,由于一个数据集的$ t_ {sys} $可变性,该方法已大大降低了大量沉淀水蒸气(PWV)波动,从10%降低到0.7%。

The ALMA observatory is now putting more focus on high-frequency observations (frequencies from 275-950 GHz). However, high-frequency observations often suffer from rapid variations in atmospheric opacity that directly affect the system temperature $T_{sys}$. Current observations perform discrete atmospheric calibrations (Atm-cals) every few minutes, with typically 10-20 occurring per hour for high frequency observation and each taking 30-40 seconds. In order to obtain more accurate flux measurements and reduce the number of atmospheric calibrations (Atm-cals), a new method to monitor $T_{sys}$ continuously is proposed using existing data in the measurement set. In this work, we demonstrate the viability of using water vapor radiometer (WVR) data to track the $T_{sys}$ continuously. We find a tight linear correlation between $T_{sys}$ measured using the traditional method and $T_{sys}$ extrapolated based on WVR data with scatter of 0.5-3%. Although the exact form of the linear relation varies among different data sets and spectral windows, we can use a small number of discrete $T_{sys}$ measurements to fit the linear relation and use this heuristic relationship to derive $T_{sys}$ every 10 seconds. Furthermore, we successfully reproduce the observed correlation using atmospheric transmission at microwave (ATM) modeling and demonstrate the viability of a more general method to directly derive the $T_{sys}$ from the modeling. We apply the semi-continuous $T_{sys}$ from heuristic fitting on a few data sets from Band 7 to Band 10 and compare the flux measured using these methods. We find the discrete and continuous $T_{sys}$ methods give us consistent flux measurements with differences up to 5%. Furthermore, this method has significantly reduced the flux uncertainty due to $T_{sys}$ variability for one dataset, which has large precipitable water vapor (PWV) fluctuation, from 10% to 0.7%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源