论文标题
在$ l_p $ $ 0 <p <1 $的$ k $ functionals上
On generalized $K$-functionals in $L_p$ for $0<p<1$
论文作者
论文摘要
我们表明,$ 0 <p <1 $的空间$ l_p $与相应的平滑功能空间$ w_p^ψ$之间的peetre $ k $功能功能,由weyl-type差异操作员$ $ψ(d)$,其中$ψ$是任何积极订单的同质函数。主要结果的证明是基于DelaValléePoussin内核的特性和三角多项式的正交公式和指数类型的整个功能。
We show that the Peetre $K$-functional between the space $L_p$ with $0<p<1$ and the corresponding smooth function space $W_p^ψ$ generated by the Weyl-type differential operator $ψ(D)$, where $ψ$ is a homogeneous function of any positive order, is identically zero. The proof of the main results is based on the properties of the de la Vallée Poussin kernels and the quadrature formulas for trigonometric polynomials and entire functions of exponential type.