论文标题

在$ l_p $ $ 0 <p <1 $的$ k $ functionals上

On generalized $K$-functionals in $L_p$ for $0<p<1$

论文作者

Kolomoitsev, Yurii, Lomako, Tetiana

论文摘要

我们表明,$ 0 <p <1 $的空间$ l_p $与相应的平滑功能空间$ w_p^ψ$之间的peetre $ k $功能功能,由weyl-type差异操作员$ $ψ(d)$,其中$ψ$是任何积极订单的同质函数。主要结果的证明是基于DelaValléePoussin内核的特性和三角多项式的正交公式和指数类型的整个功能。

We show that the Peetre $K$-functional between the space $L_p$ with $0<p<1$ and the corresponding smooth function space $W_p^ψ$ generated by the Weyl-type differential operator $ψ(D)$, where $ψ$ is a homogeneous function of any positive order, is identically zero. The proof of the main results is based on the properties of the de la Vallée Poussin kernels and the quadrature formulas for trigonometric polynomials and entire functions of exponential type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源