论文标题

通过机器学习的镜头识别大片电影中的性别偏见

Identifying gender bias in blockbuster movies through the lens of machine learning

论文作者

Haris, Muhammad Junaid, Upreti, Aanchal, Kurtaran, Melih, Ginter, Filip, Lafond, Sebastien, Azimi, Sepinoud

论文摘要

性别偏见的问题非常普遍且众所周知。在本文中,我们分析了英语电影中性别角色的刻画,这种媒介有效地影响了社会在塑造人们的信仰和观点方面。首先,我们使用自然语言处理技术收集了来自不同类型的电影的脚本,以及来自不同类型的情感和情感。之后,我们将脚本转换为嵌入,即以向量形式表示文本的方式。经过彻底的调查,我们在与社会刻板印象保持一致的电影中发现了男性和女性角色性格特征的特定模式。此外,我们使用了数学和机器学习技巧,发现了一些偏见,其中男人比女人更占主导地位和嫉妒,而女性在电影中具有更快乐的角色。在我们的作品中,我们介绍了我们的最佳知识,这是一种新颖的技术,可以通过将对话与Plutchik的情感之轮结合到一系列情感中。我们的研究旨在鼓励对电影领域中的性别平等进行思考,并促进其他研究人员自动分析电影,而不是使用手动方法。

The problem of gender bias is highly prevalent and well known. In this paper, we have analysed the portrayal of gender roles in English movies, a medium that effectively influences society in shaping people's beliefs and opinions. First, we gathered scripts of films from different genres and derived sentiments and emotions using natural language processing techniques. Afterwards, we converted the scripts into embeddings, i.e. a way of representing text in the form of vectors. With a thorough investigation, we found specific patterns in male and female characters' personality traits in movies that align with societal stereotypes. Furthermore, we used mathematical and machine learning techniques and found some biases wherein men are shown to be more dominant and envious than women, whereas women have more joyful roles in movies. In our work, we introduce, to the best of our knowledge, a novel technique to convert dialogues into an array of emotions by combining it with Plutchik's wheel of emotions. Our study aims to encourage reflections on gender equality in the domain of film and facilitate other researchers in analysing movies automatically instead of using manual approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源