论文标题

1D盒电势中的原子玻色子弗氏混合物:很少的身体和平均场多体分析

Atomic boson-fermion mixtures in 1D box potentials: Few-body and mean-field many-body analyses

论文作者

Parajuli, Bishal, Pecak, Daniel, Chien, Chih-Chun

论文摘要

我们研究了二元原子玻色子特性混合物,这些混合物通过接触相互作用和均值场多体理论与密度密度相互作用的均值相互作用和平均场多体理论限制在一维盒电位上。随着对种间和物种的相互作用的调整,出现了多种相关性和结构。几个体和多体的结果都表明,在密度曲线中可以直接观察到可混杂的相位和三块阶段分离。同时,可以从几个体体的相关性和多体密度曲线中推断出两块相位分离。我们介绍选定类型的原子混合物类型的相图,以显示不同的结构在哪里存活。几个体型的分析表明,两体相关函数可以揭示与多体计算或实验结果相关的信息。从相分离制度中的多体密度曲线中,我们提取每个物种的愈合长度,并通过能量竞争论证来解释缩放行为。

We study binary atomic boson-fermion mixtures confined in one dimensional box potentials by few-body theory with contact interactions and mean-field many-body theory with density-density interactions. A variety of correlations and structures arise as the inter- and intra- species interactions are tuned. Both few-body and many-body results show that miscible phase and three-chunk phase separation are directly observable in the density profiles. Meanwhile, two-chunk phase separation can be inferred from the few-body correlations and many-body density profiles. We present phase diagrams of selected types of atomic mixtures to show where different structures survive. The few-body analysis demonstrates that two-body correlation functions can reveal information relevant to the results from many-body calculations or experiments. From the many-body density profiles in the phase-separation regime, we extract the healing lengths of each species and explain the scaling behavior by an energy-competition argument.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源