论文标题

使用特征选择和外推的NAS加速度的准确性预测

Accuracy Prediction for NAS Acceleration using Feature Selection and Extrapolation

论文作者

Hakim, Tal

论文摘要

预测候选神经体系结构的准确性是基于NAS解决方案的重要功能。当候选体系结构具有类似于其他已知体系结构的属性时,使用现成的回归算法,预测任务非常简单。但是,当候选体系结构位于已知的架构空间之外时,回归模型必须执行推断的预测,这不仅是一项具有挑战性的任务,而且使用最受欢迎的回归算法家庭在技术上是不可能的,这些算法基于决策树。在这项工作中,我们正在尝试解决两个问题。第一个是使用特征选择提高回归精度,而另一个是评估回归算法在推断准确性预测任务上的评估。我们将NAAP-440数据集延长了具有新的表格功能的数据集,并介绍了NAAP-440E,我们将其用于评估。我们观察到与旧基线相比,新基线需要急剧改善,需要候选架构的训练过程短3倍,同时保持相同的含义渗透性术语,并且与旧基线的最佳报告的表现相比,违反了几乎2倍的单调性违规。研究中使用的扩展数据集和代码已在NAAP-440存储库中公开。

Predicting the accuracy of candidate neural architectures is an important capability of NAS-based solutions. When a candidate architecture has properties that are similar to other known architectures, the prediction task is rather straightforward using off-the-shelf regression algorithms. However, when a candidate architecture lies outside of the known space of architectures, a regression model has to perform extrapolated predictions, which is not only a challenging task, but also technically impossible using the most popular regression algorithm families, which are based on decision trees. In this work, we are trying to address two problems. The first one is improving regression accuracy using feature selection, whereas the other one is the evaluation of regression algorithms on extrapolating accuracy prediction tasks. We extend the NAAP-440 dataset with new tabular features and introduce NAAP-440e, which we use for evaluation. We observe a dramatic improvement from the old baseline, namely, the new baseline requires 3x shorter training processes of candidate architectures, while maintaining the same mean-absolute-error and achieving almost 2x fewer monotonicity violations, compared to the old baseline's best reported performance. The extended dataset and code used in the study have been made public in the NAAP-440 repository.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源