论文标题

在随机过程的分布的沃斯坦斯坦变形下,Euler和Betti曲线稳定

Euler and Betti curves are stable under Wasserstein deformations of distributions of stochastic processes

论文作者

Perez, Daniel

论文摘要

在$ d $维的紧凑riemannian流形上定义的随机过程的Euler和Betti曲线,几乎肯定在Sobolev space $ w^{n,s}(x,x,x,x,\ mathbb {r})$(带有$ d <n $)稳定在赛义者的分布下是稳定的。此外,显示所有$ p> \ frac {d} {n} $的持久图显示,瓦斯恒星的稳定性显示为依赖于$ w^{n,s}(x,x,x,\ mathbb {r})$的持续图。

Euler and Betti curves of stochastic processes defined on a $d$-dimensional compact Riemannian manifold which are almost surely in a Sobolev space $W^{n,s}(X,\mathbb{R})$ (with $d<n$) are stable under perturbations of the distributions of said processes in a Wasserstein metric. Moreover, Wasserstein stability is shown to hold for all $p>\frac{d}{n}$ for persistence diagrams stemming from functions in $W^{n,s}(X,\mathbb{R})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源