论文标题

具有高效训练方案的光子尖峰神经网络用于超快神经形态计算系统

Photonic Spiking Neural Networks with Highly Efficient Training Protocols for Ultrafast Neuromorphic Computing Systems

论文作者

Owen-Newns, Dafydd, Robertson, Joshua, Hejda, Matej, Hurtado, Antonio

论文摘要

光子技术为新颖的超快,节能和硬件友好的神经形态(类似脑)计算平台提供了良好的前景。此外,基于普遍存在,技术成熟和低成本垂直腔表面发射激光器(VCSELS)的神经形态光子方法(在纤维电形发射器中发现的设备,移动电话,汽车传感器等)特别有趣。鉴于VCSELS已经表明能够实现神经元光学尖峰响应(以超快GHz速率),因此已经提出了它们用于基于峰值的信息处理系统的能力。在这项工作中,据报道,基于仅一个垂直腔表面发射激光器(VCSEL)的硬件友好的光子系统的尖峰神经网络(SNN)操作,与新型的二进制“重量意义”训练方案一起,该方案完全利用了SNN使用的输入信息的光学峰值的离散性质。在使用传统的最小二乘训练方法和替代性新颖的二元加权方案比较性能之前,使用高度复杂,多元分类任务(Madelon)对基于VCSEL的光子SNN进行了测试。两种训练方法都达到了> 94%的出色分类精度,超过了处理时间的一小部分数据集的基准性能。新报告的培训计划还大大减少了训练设定的大小需求以及训练的节点的数量(占网络节点总数的1%)。这种基于VCSEL的光子SNN结合了报告的“重要性”加权方案,因此,基于超快尖峰的光学处理具有高度降低的训练要求和硬件复杂性,以在未来的神经形态系统和人工智能应用中进行潜在应用。

Photonic technologies offer great prospects for novel ultrafast, energy-efficient and hardware-friendly neuromorphic (brain-like) computing platforms. Moreover, neuromorphic photonic approaches based upon ubiquitous, technology-mature and low-cost Vertical-Cavity Surface Emitting Lasers (VCSELs) (devices found in fibre-optic transmitters, mobile phones, automotive sensors, etc.) are of particular interest. Given VCSELs have shown the ability to realise neuronal optical spiking responses (at ultrafast GHz rates), their use for spike-based information processing systems has been proposed. In this work, Spiking Neural Network (SNN) operation, based on a hardware-friendly photonic system of just one Vertical Cavity Surface Emitting Laser (VCSEL), is reported alongside a novel binary weight 'significance' training scheme that fully capitalises on the discrete nature of the optical spikes used by the SNN to process input information. The VCSEL-based photonic SNN is tested with a highly complex, multivariate, classification task (MADELON) before performance is compared using a traditional least-squares training method and the alternative novel binary weighting scheme. Excellent classification accuracies of >94% are reached by both training methods, exceeding the benchmark performance of the dataset in a fraction of processing time. The newly reported training scheme also dramatically reduces training set size requirements as well as the number of trained nodes (<1% of the total network node count). This VCSEL-based photonic SNN, in combination with the reported 'significance' weighting scheme, therefore grants ultrafast spike-based optical processing with highly reduced training requirements and hardware complexity for potential application in future neuromorphic systems and artificial intelligence applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源