论文标题

聚合物分类的光子量子计算

Photonic Quantum Computing For Polymer Classification

论文作者

Stoyanova, Alexandrina, Hammadia, Taha, Ricou, Arno, Penkovsky, Bogdan

论文摘要

我们为聚合物结构的二元分类提供了一种混合经典量词方法。两个聚合物类视觉(VIS)和近红外(NIR)是根据聚合物间隙的大小来定义的。混合方法结合了三种方法之一,高斯内核法,量子增强的随机厨房水槽或各种量子分类器,该方法由线性量子光电电路(LQPC)实现,以及经典的深神经网络(DNN)。后者从有关样品化学结构的经典数据信息中提取。它还降低了数据尺寸,得出紧凑的二维数据向量,然后将其馈送到LQPC。我们采用了Gan等人提出的基于光子的数据安装方案。 [EPJ量子技术。 9,16(2022)]将经典的二维数据向量嵌入到更高维的Fock空间中。这种混合经典量子策略允许通过利用只有几个光子的Fock状态来获得准确的嘈杂中间量子量子兼容分类器。使用三种混合方法中的任何一种获得的模型成功地对VIS和NIR聚合物进行了分类。它们的准确性可与0.86至0.88的分数相当。这些发现表明,我们使用光子量子计算的混合方法捕获了实际聚合物数据中的化学和结构 - 特性相关模式。当有更多逻辑Qubits提供时,他们还开辟了对复杂化学结构使用量子计算的观点。

We present a hybrid classical-quantum approach to the binary classification of polymer structures. Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps. The hybrid approach combines one of the three methods, Gaussian Kernel Method, Quantum-Enhanced Random Kitchen Sinks or Variational Quantum Classifier, implemented by linear quantum photonic circuits (LQPCs), with a classical deep neural network (DNN) feature extractor. The latter extracts from the classical data information about samples chemical structure. It also reduces the data dimensions yielding compact 2-dimensional data vectors that are then fed to the LQPCs. We adopt the photonic-based data-embedding scheme, proposed by Gan et al. [EPJ Quantum Technol. 9, 16 (2022)] to embed the classical 2-dimensional data vectors into the higher-dimensional Fock space. This hybrid classical-quantum strategy permits to obtain accurate noisy intermediate-scale quantum-compatible classifiers by leveraging Fock states with only a few photons. The models obtained using either of the three hybrid methods successfully classified the VIS and NIR polymers. Their accuracy is comparable as measured by their scores ranging from 0.86 to 0.88. These findings demonstrate that our hybrid approach that uses photonic quantum computing captures chemistry and structure-property correlation patterns in real polymer data. They also open up perspectives of employing quantum computing to complex chemical structures when a larger number of logical qubits is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源