论文标题

弱解决方案的新结构,以压缩Navier-Stokes方程

A new construction of weak solutions to compressible Navier-Stokes equations

论文作者

Chaudhuri, Nilasis, Mucha, Piotr B., Zatorska, Ewelina

论文摘要

我们证明了可压缩的Navier的弱解决方案 - 带有压力压力$ p(\ varrho)= \ varrho^γ$ for $γ\ geq 9/5 $在三个空间维度中的stokes系统。本文的新颖性是近似方案,即连续性方程的经典正则化(基于粘度近似$ \epδ\ varrho $)使用更直接的直接截断和非线性术语的正规化和压力的正则化。该方案与密度的Bresch-Jabin紧凑型标准兼容。我们重新审视此标准,并完全严格地证明它可以在我们的近似值中应用。

We prove the existence of the weak solutions to the compressible Navier--Stokes system with barotropic pressure $p(\varrho)=\varrho^γ$ for $γ\geq 9/5$ in three space dimension. The novelty of the paper is the approximation scheme that instead of the classical regularization of the continuity equation (based on the viscosity approximation $\ep Δ\varrho$) uses more direct truncation and regularisation of nonlinear terms an the pressure. This scheme is compatible with the Bresch-Jabin compactness criterion for the density. We revisit this criterion and prove, in full rigour, that it can be applied in our approximation at any level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源