论文标题

在线性时间内等待时间限制下的最低成本时间步行

Minimum-Cost Temporal Walks under Waiting-Time Constraints in Linear Time

论文作者

Brunelli, Filippo, Viennot, Laurent

论文摘要

在时间图中,每个边缘在特定时间点可用。这样的可用性点通常由“暂时边缘”表示,只能在特定的出发时间从尾巴穿过,以便在特定的旅行时间后到达头部。在这样的图中,从一个节点到另一个节点的连接性自然是由于存在时间边缘可以互相穿越的时间路径的存在而自然捕获的。当对两个时间边缘之间的节点上的节点施加限制时,考虑允许允许其几次访问相同节点(可能在不同时间)访问的时间步行的节点,然后很有趣。我们研究了在时间图中的等待时间约束下,从单个来源研究计算最低成本的时间步行的复杂性,并询问在哪些条件下可以在线性时间内解决此问题。 我们的主要结果是当输入时间图由其(经典)时空表示给出时,线性时间算法。我们使用代数框架来操纵抽象成本,以优化各种标准甚至组合。它允许改善几个标准的先前结果,例如边缘数量或整体等待时间,即使没有等待约束。它在等待约束下为所有标准节省了对数因素。有趣的是,我们表明,使用更基本的输入,由一个时间边缘的单个有序列表组成(按到达时间或出发时间分类)似乎是必要的。我们确实显示了时空表示与具有两个有序列表的表示之间的等价性。

In a temporal graph, each edge is available at specific points in time. Such an availability point is often represented by a ''temporal edge'' that can be traversed from its tail only at a specific departure time, for arriving in its head after a specific travel time. In such a graph, the connectivity from one node to another is naturally captured by the existence of a temporal path where temporal edges can be traversed one after the other. When imposing constraints on how much time it is possible to wait at a node in-between two temporal edges, it then becomes interesting to consider temporal walks where it is allowed to visit several times the same node, possibly at different times. We study the complexity of computing minimum-cost temporal walks from a single source under waiting-time constraints in a temporal graph, and ask under which conditions this problem can be solved in linear time. Our main result is a linear time algorithm when the input temporal graph is given by its (classical) space-time representation. We use an algebraic framework for manipulating abstract costs, enabling the optimization of a large variety of criteria or even combinations of these. It allows to improve previous results for several criteria such as number of edges or overall waiting time even without waiting constraints. It saves a logarithmic factor for all criteria under waiting constraints. Interestingly, we show that a logarithmic factor in the time complexity appears to be necessary with a more basic input consisting of a single ordered list of temporal edges (sorted either by arrival times or departure times). We indeed show equivalence between the space-time representation and a representation with two ordered lists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源