论文标题

自下而上的催化

Catalysis from the bottom-up

论文作者

Muñoz-Basagoiti, Maitane, Rivoire, Olivier, Zeravcic, Zorana

论文摘要

催化是在此过程中未消耗的分子加速化学反应的加速,这对于生物体至关重要,但目前在物理系统中渴望模仿具有人工成分的生物学功能。在这里,我们演示了如何使用可编程电位相互作用的球形构建块设计催化剂,并表明最小的催化剂设计(刚性二聚体)可以加速无处不在的基本反应,即键的分裂。通过结合粗粒的分子动力学模拟和理论,以及在催化剂存在和不存在的情况下比较平均反应时间,我们为其设计提供了几何和物理约束,并确定了系统中催化出现的反应条件。我们引入的框架和设计规则是一般的,可以应用于各种尺度的实验系统,从微米大小的DNA涂层胶体到厘米大小的磁握手材料,为实现具有生物启发功能的自我调节的人工系统打开了大门。

Catalysis, the acceleration of chemical reactions by molecules that are not consumed in the process, is essential to living organisms but currently absent in physical systems that aspire to emulate biological functionalities with artificial components. Here we demonstrate how to design a catalyst using spherical building blocks interacting via programmable potentials, and show that a minimal catalyst design, a rigid dimer, can accelerate a ubiquitous elementary reaction, the cleaving of a bond. By combining coarse-grained molecular dynamics simulations and theory, and by comparing the mean reaction time in the presence and absence of the catalyst, we derive geometrical and physical constraints for its design and determine the reaction conditions under which catalysis emerges in the system. The framework and design rules that we introduce are general and can be applied to experimental systems on a wide range of scales, from micron size DNA-coated colloids to centimeter size magnetic handshake materials, opening the door to the realization of self-regulated artificial systems with bio-inspired functionalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源