论文标题

来自异常匹配的线性箭量计理论的相结构

Phase structure of linear quiver gauge theories from anomaly matching

论文作者

Morikawa, Okuto, Wada, Hiroki, Yamaguchi, Satoshi

论文摘要

我们使用't Hooft异常匹配条件来考虑线性颤动仪理论的相结构。该理论的特征是箭袋图的长度$ k $。当$ k $均匀时,对称性及其异常与无数QCD相同。因此,人们可以期望发生类似于手性对称性破裂的自发对称性破裂。另一方面,当$ k $奇怪时,无质量的复合费米斯满足了异常匹配条件。我们还考虑在扭曲边界条件下的热分区函数。当$ k $甚至是有限温度下的异常情况时,我们估计与禁闭/解次限制相关的临界温度与全球对称性的破坏之间的关系。最后,当$ k $奇怪时,我们讨论有限温度下的异常匹配。

We consider the phase structure of the linear quiver gauge theory, using the 't Hooft anomaly matching condition. This theory is characterized by the length $K$ of the quiver diagram. When $K$ is even, the symmetry and its anomaly are the same as those of massless QCD. Therefore, one can expect that the spontaneous symmetry breaking similar to the chiral symmetry breaking occurs. On the other hand, when $K$ is odd, the anomaly matching condition is satisfied by the massless composite fermions. We also consider the thermal partition function under the twisted boundary conditions. When $K$ is even, from the anomaly at finite temperature, we estimate the relation between the critical temperatures associated with the confinement/deconfinement and the breaking of the global symmetry. Finally we discuss the anomaly matching at finite temperature when $K$ is odd.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源