论文标题

模仿:清洁模仿学习实现

imitation: Clean Imitation Learning Implementations

论文作者

Gleave, Adam, Taufeeque, Mohammad, Rocamonde, Juan, Jenner, Erik, Wang, Steven H., Toyer, Sam, Ernestus, Maximilian, Belrose, Nora, Emmons, Scott, Russell, Stuart

论文摘要

模仿提供了pytorch中模仿和奖励学习算法的开源实现。我们包括三种逆增强学习(IRL)算法,三种模仿学习算法和偏好比较算法。该实现已根据先前的结果进行了基准测试,并且自动化测试涵盖了98%的代码。此外,这些算法是以模块化的方式实现的,使得在框架中开发新颖算法变得简单。我们的源代码,包括文档和示例,可在https://github.com/humancompatibleai/imitation上获得。

imitation provides open-source implementations of imitation and reward learning algorithms in PyTorch. We include three inverse reinforcement learning (IRL) algorithms, three imitation learning algorithms and a preference comparison algorithm. The implementations have been benchmarked against previous results, and automated tests cover 98% of the code. Moreover, the algorithms are implemented in a modular fashion, making it simple to develop novel algorithms in the framework. Our source code, including documentation and examples, is available at https://github.com/HumanCompatibleAI/imitation

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源