论文标题

基于学习的社会协调,以提高混合交通中合作自动驾驶汽车的安全性和鲁棒性

Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic

论文作者

Valiente, Rodolfo, Toghi, Behrad, Razzaghpour, Mahdi, Pedarsani, Ramtin, Fallah, Yaser P.

论文摘要

预计自动驾驶汽车(AV)和异质人类驱动的车辆(HVS)将在同一条道路上共存。 AV的安全性和可靠性将取决于其社会意识以及他们以社会认可的方式进行复杂的社交互动的能力。但是,AV在与HVS合作以及难以理解和适应人类行为方面仍然效率低下,这在混合自主权中尤其具有挑战性。在AV和HVS共享的道路中,HV的社会偏好或个体特征是AVS未知的,并且与AVS不同,而AVS则有望遵循一项政策,HVS尤其难以预测,因为它们不一定遵循固定政策。为了应对这些挑战,我们将混合自治问题描述为多代理增强学习(MARL)问题,并提出了一种方法,该方法使AV可以隐含地从经验中学习HVS的决策,并说明所有车辆的利益,并安全地适应其他交通状况。与现有作品相反,我们量化了AVS的社会偏好,并提出了分布式奖励结构,将利他主义引入其决策过程,从而使利他主义AV可以学会建立联盟并影响HVS的行为。

It is expected that autonomous vehicles(AVs) and heterogeneous human-driven vehicles(HVs) will coexist on the same road. The safety and reliability of AVs will depend on their social awareness and their ability to engage in complex social interactions in a socially accepted manner. However, AVs are still inefficient in terms of cooperating with HVs and struggle to understand and adapt to human behavior, which is particularly challenging in mixed autonomy. In a road shared by AVs and HVs, the social preferences or individual traits of HVs are unknown to the AVs and different from AVs, which are expected to follow a policy, HVs are particularly difficult to forecast since they do not necessarily follow a stationary policy. To address these challenges, we frame the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose an approach that allows AVs to learn the decision-making of HVs implicitly from experience, account for all vehicles' interests, and safely adapt to other traffic situations. In contrast with existing works, we quantify AVs' social preferences and propose a distributed reward structure that introduces altruism into their decision-making process, allowing the altruistic AVs to learn to establish coalitions and influence the behavior of HVs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源