论文标题

基于采样的多代理模型预测控制的优化

Sampling-Based Optimization for Multi-Agent Model Predictive Control

论文作者

Wang, Ziyi, Saravanos, Augustinos D., Almubarak, Hassan, So, Oswin, Theodorou, Evangelos A.

论文摘要

我们系统地回顾了基于抽样的动态优化的变异优化,变异推理和随机搜索观点,并讨论它们与最新的优化器和随机最佳控制(SOC)理论的联系。通过统一的随机搜索角度提供了三个观点的一般收敛和样本复杂性分析。然后,我们将这些框架与分布式版本扩展到多代理控制,通过将它们与共识交替的乘数方法(ADMM)相结合,以将完整的问题分解为可以并行解决的局部社区级别级别的问题。然后基于这些框架开发模型预测控制(MPC)算法,从而导致完全分散的采样动态优化器。在仿真中,在多个用于车辆和四轮驱动器系统的复杂多代理任务上证明了所提出的算法框架的功能。结果比较了不同的基于分布式抽样的优化器及其集中式优化者,使用单峰高斯,高斯的混合物和Stein变异策略。在196辆车的情况下证明了所提出的分布算法的可伸缩性,其中直接应用基于集中抽样的方法的直接应用表明是过敏的。

We systematically review the Variational Optimization, Variational Inference and Stochastic Search perspectives on sampling-based dynamic optimization and discuss their connections to state-of-the-art optimizers and Stochastic Optimal Control (SOC) theory. A general convergence and sample complexity analysis on the three perspectives is provided through the unifying Stochastic Search perspective. We then extend these frameworks to their distributed versions for multi-agent control by combining them with consensus Alternating Direction Method of Multipliers (ADMM) to decouple the full problem into local neighborhood-level ones that can be solved in parallel. Model Predictive Control (MPC) algorithms are then developed based on these frameworks, leading to fully decentralized sampling-based dynamic optimizers. The capabilities of the proposed algorithms framework are demonstrated on multiple complex multi-agent tasks for vehicle and quadcopter systems in simulation. The results compare different distributed sampling-based optimizers and their centralized counterparts using unimodal Gaussian, mixture of Gaussians, and stein variational policies. The scalability of the proposed distributed algorithms is demonstrated on a 196-vehicle scenario where a direct application of centralized sampling-based methods is shown to be prohibitive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源