论文标题

公平增加对抗性脆弱性

Fairness Increases Adversarial Vulnerability

论文作者

Tran, Cuong, Zhu, Keyu, Fioretto, Ferdinando, Van Hentenryck, Pascal

论文摘要

深度学习模型及其在结果领域(例如面部识别)中的出色表现引入了公平与安全的交汇处。公平和鲁棒性是学习模型中经常需要的两个所需概念。公平性可确保模型不会损害某些群体(或受益)比其他群体的损害(或受益),而鲁棒性则可以衡量模型对小输入扰动的弹性。 本文显示了公平和鲁棒性之间存在二分法,并在达到公平性时进行了分析,从而降低了对对抗样本的鲁棒性。报告的分析阐明了导致这种对比行为的因素,这表明跨组的距离是该行为的关键解释者。在非线性模型和不同体系结构上进行的广泛实验验证了多个视觉域中的理论发现。最后,本文提出了一种简单而有效的解决方案,以构建模型,从而实现公平和鲁棒性之间的良好权衡。

The remarkable performance of deep learning models and their applications in consequential domains (e.g., facial recognition) introduces important challenges at the intersection of equity and security. Fairness and robustness are two desired notions often required in learning models. Fairness ensures that models do not disproportionately harm (or benefit) some groups over others, while robustness measures the models' resilience against small input perturbations. This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples. The reported analysis sheds light on the factors causing such contrasting behavior, suggesting that distance to the decision boundary across groups as a key explainer for this behavior. Extensive experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains. Finally, the paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源