论文标题

RIC-CNN:旋转不变的坐标卷积神经网络

RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network

论文作者

Mo, Hanlin, Zhao, Guoying

论文摘要

近年来,卷积神经网络在许多图像处理和计算机视觉任务中表现出良好的性能。但是,标准的CNN模型并不是图像旋转的不变。实际上,即使是输入图像的轻微旋转也会严重降低其性能。在某些实际情况下,这种缺点排除了CNN的使用。因此,在本文中,我们专注于以良好的旋转不变性设计卷积层。具体而言,基于简单的旋转不变坐标系,我们提出了一种新的卷积操作,称为旋转不变坐标卷积(RIC-C)。如果没有其他可训练的参数和数据增强,RIC-C自然对于围绕输入中心的任意旋转而自然不变。此外,我们发现了RIC-C与可变形卷积之间的联系,并提出了一种使用Pytorch实现RIC-C的简单但有效的方法。通过用相应的RIC-C替换CNN中的所有标准卷积层,可以得出RIC-CNN。使用MNIST数据集,我们首先评估RIC-CNN的旋转不变性,并将其性能与大多数现有旋转不变的CNN模型进行比较。可以观察到RIC-CNN在MNIST的旋转测试数据集上实现了最新的分类。然后,我们将RIC-C部署到VGG,Resnet和Densenet,并在两个真实图像数据集上进行分类实验。同样,对浅CNN和相应的RIC-CNN进行了训练以提取图像贴片描述符,并且我们比较了它们在贴片验证中的性能。这些实验结果再次表明,RIC-C可以很容易地用作替换标准卷积的置换,并大大提高了为不同应用设计的CNN模型的旋转不变性。

In recent years, convolutional neural network has shown good performance in many image processing and computer vision tasks. However, a standard CNN model is not invariant to image rotations. In fact, even slight rotation of an input image will seriously degrade its performance. This shortcoming precludes the use of CNN in some practical scenarios. Thus, in this paper, we focus on designing convolutional layer with good rotation invariance. Specifically, based on a simple rotation-invariant coordinate system, we propose a new convolutional operation, called Rotation-Invariant Coordinate Convolution (RIC-C). Without additional trainable parameters and data augmentation, RIC-C is naturally invariant to arbitrary rotations around the input center. Furthermore, we find the connection between RIC-C and deformable convolution, and propose a simple but efficient approach to implement RIC-C using Pytorch. By replacing all standard convolutional layers in a CNN with the corresponding RIC-C, a RIC-CNN can be derived. Using MNIST dataset, we first evaluate the rotation invariance of RIC-CNN and compare its performance with most of existing rotation-invariant CNN models. It can be observed that RIC-CNN achieves the state-of-the-art classification on the rotated test dataset of MNIST. Then, we deploy RIC-C to VGG, ResNet and DenseNet, and conduct the classification experiments on two real image datasets. Also, a shallow CNN and the corresponding RIC-CNN are trained to extract image patch descriptors, and we compare their performance in patch verification. These experimental results again show that RIC-C can be easily used as drop in replacement for standard convolutions, and greatly enhances the rotation invariance of CNN models designed for different applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源