论文标题
$ \ Mathcal {n} = 2 $ Quiver仪表理论的强耦合扩展
Strong coupling expansions in $\mathcal{N}=2$ quiver gauge theories
论文作者
论文摘要
我们在四个维度$ \ MATHCAL {N} = 2 $ SUPERCON-SUPER-SUPER-SUPER-MENCTINGAL TRAINAIRE中使用超对称性定位以大量颜色的平面限制使用超对称性定位来研究量规不变标量运算符的三点函数。通过利用非平凡关系的网络,我们表明,三分函数可以通过2分函数来表达,这可以通过确切的类似病房的身份来表达,这些函数对耦合常数的所有值有效。通过这种方式,使用有关2分函数的最新结果,我们能够获得3点函数的渐近强耦合扩展以及平面极限中相应的结构常数的膨胀。我们的结果扩展到子领先顺序,在领先顺序上最近发现的内容,其中可以与ADS/CFT对应中的超级重力水平的计算进行精确匹配。因此,我们的发现也可以解释为对这些全息计算的子领导校正校正的预测。
We study the 3-point functions of gauge-invariant scalar operators in four dimensional $\mathcal{N}=2$ superconformal quiver theories using supersymmetric localization in the planar limit of a large number of colors. By exploiting a web of nontrivial relations, we show that the 3-point functions can be expressed in terms of the 2-point functions through exact Ward-like identities that are valid for all values of the coupling constant. In this way, using recent results about the 2-point functions, we are able to obtain the asymptotic strong-coupling expansion of the 3-point functions and of the corresponding structure constants in the planar limit. Our results extend to sub-leading orders what has been recently found at leading order, where a precise match with calculations within the AdS/CFT correspondence at the supergravity level is possible. Therefore, our findings can be interpreted also as a prediction for the sub-leading string corrections to these holographic calculations.