论文标题

结构化理论中威尔逊线的阶段

Phases of Wilson Lines in Conformal Field Theories

论文作者

Aharony, Ofer, Cuomo, Gabriel, Komargodski, Zohar, Mezei, Márk, Raviv-Moshe, Avia

论文摘要

我们研究了在2+1和3+1维度中的结构规格理论中威尔逊线(带电杂质)的低能极限。作为威尔逊线表示的函数,某些缺陷操作员可以变得边际,从而导致有趣的重归其化群体流动,并使足够大的表示形式通过带电的磁场来完成或部分筛选。该结果是通用的:在足够大的表示中,威尔逊线被带电的物质字段筛选。我们观察到筛选不稳定性的开始与定点合并有关。我们在各种应用中研究了这种现象。在某些情况下,威尔逊线的筛选是通过维数变形和指数型大规模的产生进行的。我们在3+1维度中弱耦合量规理论中标识红外结构的Wilson线的空间,并确定由于玻色子或费米子而引起的筛选云。我们还以大$ N_F $限制的2+1个维度研究QED,并确定非平凡的保形威尔逊线。我们简要讨论了3+1维规格理论中的hooft线,发现它们以简单连接的量规组的弱耦合量规理论进行筛选。在具有S偶尔的非亚伯仪理论中,这与我们对威尔逊线的分析一起为筛选线算子作为耦合的函数提供了令人信服的图片。

We study the low-energy limit of Wilson lines (charged impurities) in conformal gauge theories in 2+1 and 3+1 dimensions. As a function of the representation of the Wilson line, certain defect operators can become marginal, leading to interesting renormalization group flows and for sufficiently large representations to complete or partial screening by charged fields. This result is universal: in large enough representations, Wilson lines are screened by the charged matter fields. We observe that the onset of the screening instability is associated with fixed-point mergers. We study this phenomenon in a variety of applications. In some cases, the screening of the Wilson lines takes place by dimensional transmutation and the generation of an exponentially large scale. We identify the space of infrared conformal Wilson lines in weakly coupled gauge theories in 3+1 dimensions and determine the screening cloud due to bosons or fermions. We also study QED in 2+1 dimensions in the large $N_f$ limit and identify the nontrivial conformal Wilson lines. We briefly discuss 't Hooft lines in 3+1-dimensional gauge theories and find that they are screened in weakly coupled gauge theories with simply connected gauge groups. In non-Abelian gauge theories with S-duality, this together with our analysis of the Wilson lines gives a compelling picture for the screening of the line operators as a function of the coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源