论文标题
活跃的银河核喷气机静液压光晕
Active galactic nucleus jet feedback in hydrostatic halos
论文作者
论文摘要
据信,由活跃银河核的喷气机驱动的反馈被认为是降低冷核星系簇中的冷却流。我们使用仿真来模拟孤立光环中流体动力喷气机的反馈。虽然仅在射流直径得到充分解决之后,射流传播才会收敛,但对这些喷气机对冷却时间分布函数的影响的可靠预测仅需要足以使射流型腔稳定的分辨率。比较不同的模型变化以及使用不同的流体力学代码的独立喷气模型,我们表明主要的不确定性是给定模型中喷气性质的选择。与实施无关,我们发现具有低动量通量的轻型热喷射倾向于在$ 50 $ MYR时尺度上比沉重的,动力学的射流更有效地延迟冷却流量的发作。冷却流的延迟起源于中央气体熵的位移和增强。如果射流动力学的光度取决于积聚率,那么准直的,光动力学喷气机能够减少光环中的冷却流,而无需喷射进液或宽开头角度。将喷气反馈与“动力风”的实现进行比较,表明可以通过与光晕气的不同相互作用来实现等量的恒星形成速率降低:喷气机对热光晕气具有更大的影响,同时将浓密的恒星形成阶段留在适当的位置,而在恒星形成阶段中,风力范围更具局部性,从而在差异化阶段中表现出不同的时间性属性。
Feedback driven by jets from active galactic nuclei is believed to be responsible for reducing cooling flows in cool-core galaxy clusters. We use simulations to model feedback from hydrodynamic jets in isolated halos. While the jet propagation converges only after the diameter of the jet is well resolved, reliable predictions about the effects these jets have on the cooling time distribution function only require resolutions sufficient to keep the jet-inflated cavities stable. Comparing different model variations, as well as an independent jet model using a different hydrodynamics code, we show that the dominant uncertainties are the choices of jet properties within a given model. Independent of implementation, we find that light, thermal jets with low momentum flux tend to delay the onset of a cooling flow more efficiently on a $50$ Myr timescale than heavy, kinetic jets. The delay of the cooling flow originates from a displacement and boost in entropy of the central gas. If the jet kinetic luminosity depends on accretion rate, collimated, light, hydrodynamic jets are able to reduce cooling flows in halos, without a need for jet precession or wide opening angles. Comparing the jet feedback with a `kinetic wind' implementation shows that equal amounts of star formation rate reduction can be achieved by different interactions with the halo gas: the jet has a larger effect on the hot halo gas while leaving the denser, star forming phase in place, while the wind acts more locally on the star forming phase, which manifests itself in different time-variability properties.