论文标题
有限尺度理论和稳定器代码中的高层对称性
Higher-group symmetry in finite gauge theory and stabilizer codes
论文作者
论文摘要
可以通过拓扑有限的组规定来描述大量物质的间隙阶段。在本文中,我们展示了这样的仪表理论如何具有详细研究的较高组全球对称性。我们在$(D+1)$时空维度中得出了$ d $ - 组全球对称性及其对拓扑有限组理论的Hooft异常,包括非阿布莱恩量规组和Dijkgraaf with Twitts。我们专注于由可逆(Abelian)磁缺陷产生的1形对称性以及由较低维度测量的对称性对称性拓扑(SPT)阶段装饰的可逆拓扑缺陷产生的较高形式的对称性。我们表明,由于WITTEN效应和电荷 - 升华附着的概括,磁性缺陷产生的1形对称性将与其他对称性混合到更高的组中。我们在各种晶格模型示例中描述了这样的高组对称性。我们讨论了几种应用,包括对一般费米子对称组(3+1)d中费米子SPT阶段的分类,在此中,我们还得出了$ [o_5] \ in H^5(bg,u(u(1))$阻塞的$ [o_5] \的更简单公式。我们还展示了$ D $ - 组对称性与耐故障的非Pauli逻辑门以及稳定器代码中精制的Clifford层次结构有关。我们使用$ d $ - 组对称性,例如(3+1)d $ \ mathbb {z} _2 $ toric代码,在稳定器代码中发现了新的逻辑门。
A large class of gapped phases of matter can be described by topological finite group gauge theories. In this paper we show how such gauge theories possess a higher-group global symmetry, which we study in detail. We derive the $d$-group global symmetry and its 't Hooft anomaly for topological finite group gauge theories in $(d+1)$ space-time dimensions, including non-Abelian gauge groups and Dijkgraaf-Witten twists. We focus on the 1-form symmetry generated by invertible (Abelian) magnetic defects and the higher-form symmetries generated by invertible topological defects decorated with lower dimensional gauged symmetry-protected topological (SPT) phases. We show that due to a generalization of the Witten effect and charge-flux attachment, the 1-form symmetry generated by the magnetic defects mixes with other symmetries into a higher group. We describe such higher-group symmetry in various lattice model examples. We discuss several applications, including the classification of fermionic SPT phases in (3+1)D for general fermionic symmetry groups, where we also derive a simpler formula for the $[O_5] \in H^5(BG, U(1))$ obstruction that has appeared in prior work. We also show how the $d$-group symmetry is related to fault-tolerant non-Pauli logical gates and a refined Clifford hierarchy in stabilizer codes. We discover new logical gates in stabilizer codes using the $d$-group symmetry, such as a Controlled-Z gate in (3+1)D $\mathbb{Z}_2$ toric code.