论文标题
推荐系统的相互规范的双重协作自动编码器
Mutually-Regularized Dual Collaborative Variational Auto-encoder for Recommendation Systems
论文作者
论文摘要
最近,以用户为导向的自动编码器(UAE)广泛用于推荐系统中,以根据用户的历史评分来学习语义表示。但是,由于未在阿联酋对潜在项目变量进行建模,因此当评分稀疏时,很难使用广泛可用的项目内容信息。此外,每当新项目到达时,我们都需要等待收集这些项目的评级数据,并从头开始重新研究阿联酋,这在实践中效率低下。为了同时解决上述两个问题,我们提出了一个相互规范化的双重协作变异自动编码器(MD-CVAE)以供推荐。首先,通过用堆叠的潜在物品嵌入替换随机初始化的最后一层重量,MD-CVAE将两个异构信息源(即物品内容和用户评分)整合到相同的原理变异框架中,将阿联酋的权重通过物品的重量正规化,这样的avo avo spars spars spars spars spars spars spars spars spars spars spars。此外,正则化是相互的,因为用户评分还可以帮助双重项目内容模块了解更多面向建议的项目内容嵌入。最后,我们提出了MD-CVAE的对称推理策略,其中阿联酋编码器的第一层权重与阿联酋解码器的潜在项目嵌入。通过此策略,不需要再培训才能推荐新引入的项目。实证研究表明,在正常和冷启动方案中,MD-CVAE的有效性。代码可在https://github.com/yaochenzhu/md-cvae上找到。
Recently, user-oriented auto-encoders (UAEs) have been widely used in recommender systems to learn semantic representations of users based on their historical ratings. However, since latent item variables are not modeled in UAE, it is difficult to utilize the widely available item content information when ratings are sparse. In addition, whenever new items arrive, we need to wait for collecting rating data for these items and retrain the UAE from scratch, which is inefficient in practice. Aiming to address the above two problems simultaneously, we propose a mutually-regularized dual collaborative variational auto-encoder (MD-CVAE) for recommendation. First, by replacing randomly initialized last layer weights of the vanilla UAE with stacked latent item embeddings, MD-CVAE integrates two heterogeneous information sources, i.e., item content and user ratings, into the same principled variational framework where the weights of UAE are regularized by item content such that convergence to a non-optima due to data sparsity can be avoided. In addition, the regularization is mutual in that user ratings can also help the dual item content module learn more recommendation-oriented item content embeddings. Finally, we propose a symmetric inference strategy for MD-CVAE where the first layer weights of the UAE encoder are tied to the latent item embeddings of the UAE decoder. Through this strategy, no retraining is required to recommend newly introduced items. Empirical studies show the effectiveness of MD-CVAE in both normal and cold-start scenarios. Codes are available at https://github.com/yaochenzhu/MD-CVAE.