论文标题

研究在二到一分钟的时间尺度上改善光伏热模型的方法

Investigating methods to improve photovoltaic thermal models at second-to-minute timescales

论文作者

Herteleer, Bert, Kladas, Anastasios, Chowdhury, Gofran, Catthoor, Francky, Cappelle, Jan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper presents a range of methods to improve the accuracy of equation-based thermal models of PV modules at second-to-minute timescales. We present an RC-equivalent conceptual model for PV modules, where wind effects are captured. We show how the thermal time constant $τ$ of PV modules can be determined from measured data, and subsequently used to make static thermal models dynamic by applying the Exponential Weighted Mean (EWM) approach to irradiance and wind signals. On average, $τ$ is $6.3 \pm 1~$min for fixed-mount PV systems. Based on this conceptual model, the Filter- EWM - Mean Bias Error correction (FEM) methodology is developed. We propose two thermal models, WM1 and WM2, and compare these against the models of Ross, Sandia, and Faiman on twenty-four datasets of fifteen sites, with time resolutions ranging from 1$~$s to 1$~$h, the majority of these at 1$~$min resolution. The FEM methodology is shown to reduce model errors (RMSE and MAE) on average for all sites and models versus the standard steady-state equivalent by -1.1$~$K and -0.75$~$K respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源