论文标题
Griffiths的hodge-riemann属性(1,1) - form条目
Hodge-Riemann property of Griffiths positive matrices with (1,1)-form entries
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The classical Hard Lefschetz theorem (HLT), Hodge-Riemann bilinear relation theorem (HRR) and Lefschetz decomposition theorem (LD) are stated for a power of a Kähler class on a compact Kähler manifold. These theorems are not true for an arbitrary class, even if it contains a smooth strictly positive representative. Dinh-Nguyên proved the mixed HLT, HRR and LD for a product of arbitrary Kähler classes. Instead of products, they asked whether determinants of Griffiths positive $k\times k$ matrices with $(1,1)$-form entries in $\bc^n$ satisfies these theorems in the linear case. This paper answered their question positively when $k=2$ and $n=2,3$. Moreover, assume that the matrix only has diagonalized entries, for $k=2$ and $n\geqslant 4$, the determinant satisfies HLT for bidegrees $(n-2,0)$, $(n-3,1)$, $(1,n-3)$ and $(0,n-2)$. In particular, for $k=2$ and $n=4,5$ with this extra assumption, the determinant satisfies HRR, HLT and LD. Two applications: First, a Griffiths positive $2\times 2$ matrix with $(1,1)$-form entries, if all entries are $\mathbb{C}$-linear combinations of the diagonal entries, then its determinant also satisfies these theorems. Second, on a complex torus of dimension $\leqslant 5$, the determinant of a Griffiths positive $2\times 2$ matrix with diagonalized entries satisfies these theorems.