论文标题

部分可观测时空混沌系统的无模型预测

Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia Recognition

论文作者

Hu, Mengjiao, Jiang, Xudong, Sim, Kang, Zhou, Juan Helen, Guan, Cuntai

论文摘要

深度学习已成功地应用于识别自然图像和医学图像。但是,识别3D神经影像学数据的差距仍然存在差距,尤其是对于精神分裂症和精神分裂症和抑郁症等精神疾病,这些疾病在特定切片中没有明显改变。在这项研究中,我们建议通过2+1D框架处理3D数据,以便我们可以利用在巨大的成像网数据集上预先训练的强大的深2D卷积神经网络(CNN)网络,以用于3D神经影像识别。具体而言,根据相邻的体素位置将3D磁共振成像(MRI)指标(MRI)度量(灰质,白质和脑脊液)分解为2D切片,并输入到2D CNN模型上,预先训练在ImageNet上,以从三个视图(Axial,Coronal,coronal和Sagital和Sagital和Sagital和Sagital)中提取表面图。由于激活模式在特征地图上稀疏分布,因此应用全局池以删除冗余信息。提出了渠道和切片的卷积,以在2D CNN模型未加工的第三视图维度中汇总上下文信息。融合了多视线和多视图信息以进行最终预测。我们的方法优于手工制作的基于功能的机器学习,具有支持向量机(SVM)分类器的深度功能方法和经过从头开始训练的3D CNN模型,并以更好的交叉验证结果对西北大学精神分裂症数据集进行了更好的交叉验证结果,并且结果在另一个独立数据集中复制了结果。

Deep learning has been successfully applied to recognizing both natural images and medical images. However, there remains a gap in recognizing 3D neuroimaging data, especially for psychiatric diseases such as schizophrenia and depression that have no visible alteration in specific slices. In this study, we propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition. Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics (grey matter, white matter, and cerebrospinal fluid) are decomposed to 2D slices according to neighboring voxel positions and inputted to 2D CNN models pre-trained on the ImageNet to extract feature maps from three views (axial, coronal, and sagittal). Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps. Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third view dimension unprocessed by the 2D CNN model. Multi-metric and multi-view information are fused for final prediction. Our approach outperforms handcrafted feature-based machine learning, deep feature approach with a support vector machine (SVM) classifier and 3D CNN models trained from scratch with better cross-validation results on publicly available Northwestern University Schizophrenia Dataset and the results are replicated on another independent dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源