论文标题
轴承吊带信号功率来自互惠
Axion haloscope signal power from reciprocity
论文作者
论文摘要
轴突卤代从银河晕中搜索暗物质轴,最常见的是测量由有效电流密度产生的过量功率。从检测或缺乏检测的轴突参数需要估计预期信号功率。通常,这是通过研究卤素对已知但不同的源电流密度的响应(例如通过反射测量)来完成的。但是,只有在特殊情况下,当两个源诱导相同的电磁场时,才能对反射测量的数量进行充分描述轴心测量过程中的设置。尽管这可能对传统的谐振腔卤素有效,但新的宽带或开放设计(如碟形天线或介电卤代)无法做到这一假设。需要在轴和反射引起的场之间建立更一般的关系。在本文中,我们使用Lorentz互惠定理来得出轴突信号功率的表达式,该表达式不是可测量的反射诱导的场,而不是无法测量的轴突诱导的场。这完全阐明了需要了解卤素对未知轴源的响应的需求。它适用于各种卤代型,包括谐振腔,介电卤素和宽带碟形天线。
Axion haloscopes search for dark matter axions from the galactic halo, most commonly by measuring a power excess sourced by the axion effective current density. Constraining axion parameters from detection or lack thereof requires estimating the expected signal power. Often, this is done by studying the response of the haloscope to a known, but different, source current density, for example via a reflection measurement. However, only in the special case when both sources induce the same electromagnetic fields, do the quantities derived from a reflection measurement adequately describe the setup during an axion measurement. While this might be valid for the traditional resonant cavity haloscope, new broadband or open designs like dish antennas or dielectric haloscopes cannot make this assumption. A more general relation between axion- and reflection-induced fields is needed. In this article, we use the Lorentz reciprocity theorem to derive an expression for the axion signal power which instead of the unmeasurable axion-induced fields depends on the measurable reflection-induced fields. This entirely circumvents the need to know the response of the haloscope to the unknown axion source. It applies to a wide variety of haloscopes including resonant cavities, dielectric haloscopes, and broadband dish antennas.