论文标题

详尽的符号回归

Exhaustive Symbolic Regression

论文作者

Bartlett, Deaglan J., Desmond, Harry, Ferreira, Pedro G.

论文摘要

符号回归(SR)算法试图学习以高度可解释的方式拟合数据的分析表达式。常规的SR遭受了两个基本问题,我们在这里解决。首先,这些方法随机搜索空间(通常使用遗传编程),因此不一定找到最佳功能。其次,用于选择方程式最佳平衡精度和简单性的标准是可变和主观的。为了解决这些问题,我们介绍了详尽的符号回归(ESR),该回归(ESR)是系统地,有效地考虑所有可能的方程式 - 使用给定的操作员组制成,最多可达指定的最大复杂性 - 因此,可以保证找到真正的最佳(如果参数是完美优化的)和对这些约束的完整函数。我们将最小描述长度原理作为一种严格的方法来将这些偏好组合为一个目标。为了说明ESR的功能,我们将其应用于宇宙天文纪录器的目录和超新星的万神殿+样品,以学习哈勃速率作为RedShift的函数,发现$ \ sim $ \ sim $ 40功能(在520万个试验功能中)比Friedmann方程更适合数据。因此,这些低频数据并不偏爱宇宙学标准模型的扩展历史。我们公开提供代码和完整方程组。

Symbolic Regression (SR) algorithms attempt to learn analytic expressions which fit data accurately and in a highly interpretable manner. Conventional SR suffers from two fundamental issues which we address here. First, these methods search the space stochastically (typically using genetic programming) and hence do not necessarily find the best function. Second, the criteria used to select the equation optimally balancing accuracy with simplicity have been variable and subjective. To address these issues we introduce Exhaustive Symbolic Regression (ESR), which systematically and efficiently considers all possible equations -- made with a given basis set of operators and up to a specified maximum complexity -- and is therefore guaranteed to find the true optimum (if parameters are perfectly optimised) and a complete function ranking subject to these constraints. We implement the minimum description length principle as a rigorous method for combining these preferences into a single objective. To illustrate the power of ESR we apply it to a catalogue of cosmic chronometers and the Pantheon+ sample of supernovae to learn the Hubble rate as a function of redshift, finding $\sim$40 functions (out of 5.2 million trial functions) that fit the data more economically than the Friedmann equation. These low-redshift data therefore do not uniquely prefer the expansion history of the standard model of cosmology. We make our code and full equation sets publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源