论文标题
Riemann Zeta功能的扭曲混合力矩
Twisted mixed moments of the Riemann zeta function
论文作者
论文摘要
我们分析了Riemann Zeta函数的扭曲混合力矩的集合,并在某些情况下建立了渐近公式的有效性,该公式在某些情况下构成了形状$ p(\ log t)t^{c} $,以实现合适的常数$ c <1 $和多项式$ p(x)$。此类考试是无条件地进行的,并在$ abc $ - 注射器的较弱版本的假设下进行。
We analyse a collection of twisted mixed moments of the Riemann zeta function and establish the validity of asymptotic formulae comprising on some instances secondary terms of the shape $P(\log T) T^{C}$ for a suitable constant $C<1$ and a polynomial $P(x)$. Such examinations are performed both unconditionally and under the assumption of a weaker version of the $abc$-conjecture.