论文标题

自适应全球本地特征增强放射学报告生成

Self adaptive global-local feature enhancement for radiology report generation

论文作者

Wang, Yuhao, Wang, Kai, Liu, Xiaohong, Gao, Tianrun, Zhang, Jingyue, Wang, Guangyu

论文摘要

自动放射学报告的一代旨在自动生成医学图像的详细描述,该描述可以大大减轻放射科医生的工作量,并为偏远地区提供更好的医疗服务。大多数现有作品都会关注医学图像的整体印象,因此未能利用重要的解剖信息。但是,在实际的临床实践中,放射科医生通常会找到重要的解剖结构,然后寻找某些结构异常的迹象,并理解潜在的疾病。在本文中,我们提出了一种新型的框架Agfnet,以动态融合全局和解剖区域的特征,以生成多元格的放射学报告。首先,我们提取输入胸部X射线(CXR)的重要解剖区域和全局特征。然后,以区域特征和全局特征作为输入,我们提出的自适应融合门模块可以动态融合多粒度信息。最后,字幕发电机通过多粒性特征生成放射学报告。实验结果表明,我们的模型在两个基准数据集(包括IU X射线和Mimic-CXR)上实现了最先进的性能。进一步的分析还证明,我们的模型能够利用放射学图像和文本中的多元信息信息,从而帮助生成更准确的报告。

Automated radiology report generation aims at automatically generating a detailed description of medical images, which can greatly alleviate the workload of radiologists and provide better medical services to remote areas. Most existing works pay attention to the holistic impression of medical images, failing to utilize important anatomy information. However, in actual clinical practice, radiologists usually locate important anatomical structures, and then look for signs of abnormalities in certain structures and reason the underlying disease. In this paper, we propose a novel framework AGFNet to dynamically fuse the global and anatomy region feature to generate multi-grained radiology report. Firstly, we extract important anatomy region features and global features of input Chest X-ray (CXR). Then, with the region features and the global features as input, our proposed self-adaptive fusion gate module could dynamically fuse multi-granularity information. Finally, the captioning generator generates the radiology reports through multi-granularity features. Experiment results illustrate that our model achieved the state-of-the-art performance on two benchmark datasets including the IU X-Ray and MIMIC-CXR. Further analyses also prove that our model is able to leverage the multi-grained information from radiology images and texts so as to help generate more accurate reports.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源