论文标题
动力电感参数放大器内的自旋回波的原位扩增
In-situ amplification of spin echoes within a kinetic inductance parametric amplifier
论文作者
论文摘要
近年来,超导微谐振器与量子限制的约瑟夫森参数放大器结合使用,导致了四个以上的数量级提高了脉冲电子旋转(ESR)测量的灵敏度。到目前为止,微波谐振器和放大器已被设计为单独的组件,这主要是由于Josephson基于基于中等磁场的设备的不兼容。这导致了在严格的环境下运行的复杂光谱仪,从而为该技术广泛采用了技术障碍。在这里,我们通过将旋转的集合直接与弱非线性微波谐振器直接耦合来绕过这个问题,该谐振器是通过磁场弹性薄薄膜设计的。我们使用$ 1 $ 〜PL有效模式体积进行脉冲ESR测量值,并使用同一设备放大所得的自旋信号,最终在单发的Hahn Echo测量中以400 mk的温度实现了$ 2.8 \ times 10^3 $旋转的灵敏度。我们证明了在254 〜MT的田间的合并功能,从而突出了该技术在更常规的ESR操作条件下应用的潜力。
The use of superconducting micro-resonators in combination with quantum-limited Josephson parametric amplifiers has in recent years lead to more than four orders of magnitude improvement in the sensitivity of pulsed Electron Spin Resonance (ESR) measurements. So far, the microwave resonators and amplifiers have been designed as separate components, largely due to the incompatibility of Josephson junction-based devices with even moderate magnetic fields. This has led to complex spectrometers that operate under strict environments, creating technical barriers for the widespread adoption of the technique. Here we circumvent this issue by inductively coupling an ensemble of spins directly to a weakly nonlinear microwave resonator, which is engineered from a magnetic field-resilient thin superconducting film. We perform pulsed ESR measurements with a $1$~pL effective mode volume and amplify the resulting spin signal using the same device, ultimately achieving a sensitivity of $2.8 \times 10^3$ spins in a single-shot Hahn echo measurement at a temperature of 400 mK. We demonstrate the combined functionalities at fields as large as 254~mT, highlighting the technique's potential for application under more conventional ESR operating conditions.