论文标题

组合代数的内部作业

The Internal Operads of Combinatory Algebras

论文作者

Hasegawa, Masahito

论文摘要

我们认为,运营提供了一个通用框架,用于处理多项式和组合代数的结合性,包括经典的$ \ Mathbf {sk} $ - 代数,线性$ \ mathbf {bci} $ - 代数 - 代数 - planar $ \ m m mathbf {bibraire as bras as bras as bbr as as bras as as as \ _) $ \ mathbf {bc^\ pm i} $ - 代数。我们表明,每个扩展的组合代数都会产生一个规范的封闭式奥尔塔尔,我们将其称为组合代数的内部作业。内部的作业结构从封闭的作战界到了伸展组合代数。作为副产品,我们为上述组合代数类得出扩展性公理。

We argue that operads provide a general framework for dealing with polynomials and combinatory completeness of combinatory algebras, including the classical $\mathbf{SK}$-algebras, linear $\mathbf{BCI}$-algebras, planar $\mathbf{BI}(\_)^\bullet$-algebras as well as the braided $\mathbf{BC^\pm I}$-algebras. We show that every extensional combinatory algebra gives rise to a canonical closed operad, which we shall call the internal operad of the combinatory algebra. The internal operad construction gives a left adjoint to the forgetful functor from closed operads to extensional combinatory algebras. As a by-product, we derive extensionality axioms for the classes of combinatory algebras mentioned above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源