论文标题

多因素积极学习以估算Triso核燃料的故障估计

Multifidelity Active Learning for Failure Estimation of TRISO Nuclear Fuel

论文作者

Dhulipala, Somayajulu L. N., Chakroborty, Promit, Shields, Michael D., Jiang, Wen, Spencer, Benjamin W., Hales, Jason D.

论文摘要

三结构各向同性(TRISO)涂层的颗粒燃料是一种强大的核燃料,该核燃料旨在用于多种现代核技术。因此,表征其安全性对于核技术的可靠运行至关重要。但是,Triso燃料故障概率很小,计算模型很耗时,可以使用传统的Monte Carlo型方法对其进行评估。在本文中,我们提出了一种多余的主动学习方法,以有效估计昂贵的计算模型的小失败概率。主动学习提出了最佳后续预测性能和多倍数建模的下一个最佳训练集,使用较便宜的低保真性模型来近似高保真模型的输出。在介绍了多重级数活动方法之后,我们将其应用于有效预测Triso失败概率并与参考结果进行比较。

The Tristructural isotropic (TRISO)-coated particle fuel is a robust nuclear fuel proposed to be used for multiple modern nuclear technologies. Therefore, characterizing its safety is vital for the reliable operation of nuclear technologies. However, the TRISO fuel failure probabilities are small and the computational model is time consuming to evaluate them using traditional Monte Carlo-type approaches. In the paper, we present a multifidelity active learning approach to efficiently estimate small failure probabilities given an expensive computational model. Active learning suggests the next best training set for optimal subsequent predictive performance and multifidelity modeling uses cheaper low-fidelity models to approximate the high-fidelity model output. After presenting the multifidelity active learning approach, we apply it to efficiently predict TRISO failure probability and make comparisons to the reference results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源