论文标题
部分可观测时空混沌系统的无模型预测
Fine shape II: A Whitehead-type theorem
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We prove an "abelian, locally compact" Whitehead theorem in fine shape: A fine shape morphism between locally connected finite-dimensional locally compact separable metrizable spaces with trivial $π_0$ and $π_1$ is a fine shape equivalence if and only if it induces isomorphisms on the $π_i$ (=the Steenrod-Sitnikov homotopy groups). We show by an example that the hypothesis of local connectedness cannot be dropped (even though it can be dropped in the compact case). As a byproduct, we also show that for a locally compact separable metrizable space $X$, the Steenrod-Sitnikov homology $H_n(X)=0$ if and only if each compactum $K\subset X$ lies in a compactum $L\subset X$ such that the map $H_n(K)\to H_n(L)$ is trivial. A cornerstone result of the paper is purely algebraic: If a direct sequence of groups $Γ_0\toΓ_1\to\dots$ has trivial colimit, then it is trivial as an ind-group (i.e. each $Γ_i$ maps trivially to some $Γ_j$), as long as it has one of the following forms: $\bullet$ $\lim^1_i G_{i0}\to\lim^1_i G_{i1}\to\dots$, where the $G_{ij}$ are countable abelian groups; $\bullet$ $\lim_i G_{i0}\to\lim_i G_{i1}\to\dots$, where the $G_{ij}$ are finitely generated groups, which are either all abelian or satisfy the Mittag-Leffler condition for each $j$.