论文标题
部分可观测时空混沌系统的无模型预测
Realizing a Robust, Reconfigurable Active Quenching Design for Multiple Types of Single-Photon Avalanche Detectors
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Most active quench circuits used for single-photon avalanche photodetectors (APDs) are designed either with discrete components which lack the flexibility of dynamically changing the control parameters, or with custom ASICs which require a long development time and high cost. As an alternative, we present a reconfigurable and robust hybrid design implemented using a System-on-Chip (SoC), which integrates both an FPGA and a microcontroller. We take advantage of the FPGA's speed and reconfiguration capabilities to vary the quench and reset parameters dynamically over a large range, thus allowing our system to operate a variety of APDs without changing the design. The microcontroller enables the remote adjustment of control parameters and calibration of APDs in the field. The ruggedized design uses components with space heritage, thus making it suitable for space-based applications in the fields of telecommunications and quantum key distribution (QKD). We demonstrate our circuit by operating a commercial APD cooled to -20°C with a deadtime of 35ns while maintaining the after-pulsing probability at close to 3%. We also showcase its versatility by operating custom-fabricated chip-scale APDs, which paves the way for automated wafer-scale characterization.