论文标题
重新访问基于色彩事件的跟踪:统一网络,数据集和度量标准
Revisiting Color-Event based Tracking: A Unified Network, Dataset, and Metric
论文作者
论文摘要
近年来,将颜色和事件摄像机(也称为动态视觉传感器,DVS)结合在一起是一个新兴的研究主题。现有的色彩事件跟踪框架通常包含多个分散的模块,这些模块可能导致低效率和高计算复杂性,包括特征提取,融合,匹配,互动学习等。在本文中,我们提出了一个单阶段的骨干网络,用于色彩事业统一的统一跟踪(CEUTRACK),从而实现了上述功能。鉴于事件点和RGB帧,我们首先将点转换为体素,并分别裁剪模板和搜索区域的两种模态。然后,将这些区域投射到代币中,并在统一的变压器骨干网络中馈入。输出功能将被馈入目标对象定位的跟踪头。我们提出的CEUTRACK是简单,有效且高效的,可实现超过75 fps和新的SOTA性能。为了更好地验证我们的模型的有效性并解决了该任务的数据缺陷,我们还提出了一个通用和大规模的基准数据集,用于色彩事件跟踪,称为Coesot,其中包含90个类别和1354个视频序列。此外,在我们的评估工具包中提出了一个名为BOC的新评估度量,以评估相对于基线方法的突出性。我们希望新提出的方法,数据集和评估度量标准为基于色情的跟踪提供更好的平台。数据集,工具包和源代码将在:\ url {https://github.com/event-ahu/coesot}上发布。
Combining the Color and Event cameras (also called Dynamic Vision Sensors, DVS) for robust object tracking is a newly emerging research topic in recent years. Existing color-event tracking framework usually contains multiple scattered modules which may lead to low efficiency and high computational complexity, including feature extraction, fusion, matching, interactive learning, etc. In this paper, we propose a single-stage backbone network for Color-Event Unified Tracking (CEUTrack), which achieves the above functions simultaneously. Given the event points and RGB frames, we first transform the points into voxels and crop the template and search regions for both modalities, respectively. Then, these regions are projected into tokens and parallelly fed into the unified Transformer backbone network. The output features will be fed into a tracking head for target object localization. Our proposed CEUTrack is simple, effective, and efficient, which achieves over 75 FPS and new SOTA performance. To better validate the effectiveness of our model and address the data deficiency of this task, we also propose a generic and large-scale benchmark dataset for color-event tracking, termed COESOT, which contains 90 categories and 1354 video sequences. Additionally, a new evaluation metric named BOC is proposed in our evaluation toolkit to evaluate the prominence with respect to the baseline methods. We hope the newly proposed method, dataset, and evaluation metric provide a better platform for color-event-based tracking. The dataset, toolkit, and source code will be released on: \url{https://github.com/Event-AHU/COESOT}.