论文标题

通过零拍摄实体检索对知识感知的层次图来建模细粒度信息

Modeling Fine-grained Information via Knowledge-aware Hierarchical Graph for Zero-shot Entity Retrieval

论文作者

Wu, Taiqiang, Bai, Xingyu, Guo, Weigang, Liu, Weijie, Li, Siheng, Yang, Yujiu

论文摘要

零拍摄实体检索,旨在将提及与零射击设置下的候选实体联系起来,对于自然语言处理中的许多任务至关重要。大多数现有方法通过预先训练的语言模型中相应上下文的句子嵌入表示/实体。但是,我们认为,这种粗粒句子的嵌入无法完全模拟提及/实体,尤其是当对提及/实体的注意力分数相对较低时。在这项工作中,我们提出了GER,A \ TextBf {G} Raph增强\ TextBf {E} ntity \ textbf {r} etReval Framework,以捕获更细粒度的信息,以互补地与句子嵌入。我们从相应的上下文中提取知识单元,然后构建一个提及/实体集中图。因此,我们可以通过从这些知识单元中汇总信息来了解有关提及/实体的细粒度信息。为了避免中央提及/实体节点的图形信息瓶颈,我们构建了一个层次图并设计了一种新型的分层图注意网络〜(HGAN)。对流行基准测试的实验结果表明,我们提出的GER框架的性能要比以前的最先进模型更好。该代码已在https://github.com/wutaiqiang/ger-wsdm2023上找到。

Zero-shot entity retrieval, aiming to link mentions to candidate entities under the zero-shot setting, is vital for many tasks in Natural Language Processing. Most existing methods represent mentions/entities via the sentence embeddings of corresponding context from the Pre-trained Language Model. However, we argue that such coarse-grained sentence embeddings can not fully model the mentions/entities, especially when the attention scores towards mentions/entities are relatively low. In this work, we propose GER, a \textbf{G}raph enhanced \textbf{E}ntity \textbf{R}etrieval framework, to capture more fine-grained information as complementary to sentence embeddings. We extract the knowledge units from the corresponding context and then construct a mention/entity centralized graph. Hence, we can learn the fine-grained information about mention/entity by aggregating information from these knowledge units. To avoid the graph information bottleneck for the central mention/entity node, we construct a hierarchical graph and design a novel Hierarchical Graph Attention Network~(HGAN). Experimental results on popular benchmarks demonstrate that our proposed GER framework performs better than previous state-of-the-art models. The code has been available at https://github.com/wutaiqiang/GER-WSDM2023.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源