论文标题

时间知识图与历史对比学习

Temporal Knowledge Graph Reasoning with Historical Contrastive Learning

论文作者

Xu, Yi, Ou, Junjie, Xu, Hui, Fu, Luoyi

论文摘要

时间知识图,是存储和建模动态关系的有效方法,在事件预测中显示出有希望的前景。但是,大多数时间知识图推理方法高度取决于事件的复发或周期性,这给推断与缺乏历史相互作用的实体相关的未来事件带来了挑战。实际上,当前时刻通常是历史信息的一小部分和那些未观察到的基本因素的综合作用。为此,我们根据历史对比学习的新培训框架提出了一个新事件预测模型,称为“对比事件网络(CENET)”。 Cenet学习历史和非历史性依赖性,以区分最可能与给定查询相匹配的最潜在实体。同时,它通过启动对比度学习来调查当前时刻是否更多地取决于历史或非历史事件。这些表示形式进一步有助于训练二进制分类器,其输出是布尔面膜,以指示搜索空间中的相关实体。在推论过程中,CENET采用基于面具的策略来产生最终结果。我们在五个基准图上评估了我们提出的模型。结果表明,CENET在大多数指标中的表现显着胜过所有现有方法,在基于事件的数据集中,命中率至少$ 8.3 \%$相对提高@1的相对改善。

Temporal knowledge graph, serving as an effective way to store and model dynamic relations, shows promising prospects in event forecasting. However, most temporal knowledge graph reasoning methods are highly dependent on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current moment is often the combined effect of a small part of historical information and those unobserved underlying factors. To this end, we propose a new event forecasting model called Contrastive Event Network (CENET), based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query. Simultaneously, it trains representations of queries to investigate whether the current moment depends more on historical or non-historical events by launching contrastive learning. The representations further help train a binary classifier whose output is a boolean mask to indicate related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least $8.3\%$ relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源