论文标题

安全灯:一种实现无碰撞交通信号控制的增强学习方法

SafeLight: A Reinforcement Learning Method toward Collision-free Traffic Signal Control

论文作者

Du, Wenlu, Ye, Junyi, Gu, Jingyi, Li, Jing, Wei, Hua, Wang, Guiling

论文摘要

交通信号控制对我们的日常生活至关重要。在美国,大约有四分之一的道路事故发生在交叉路口,这是由于信号时机的问题,敦促开发面向安全的交叉路口控制。但是,现有关于使用加强学习技术进行自适应交通信号控制的研究主要集中于最大程度地减少交通延迟,但忽略了潜在的不安全状况的暴露。我们首次将道路安全标准纳入执行,以确保现有的强化学习方法的安全,旨在朝着零碰撞的交叉路口进行操作。我们已经提出了一种安全增强的残留增强学习方法(安全性),并采用了多种优化技术,例如多目标损失功能和奖励成型,以更好地进行知识整合。使用合成和现实基准数据集进行了广泛的实验。结果表明,我们的方法可以大大减少碰撞,同时增加交通流动性。

Traffic signal control is safety-critical for our daily life. Roughly one-quarter of road accidents in the U.S. happen at intersections due to problematic signal timing, urging the development of safety-oriented intersection control. However, existing studies on adaptive traffic signal control using reinforcement learning technologies have focused mainly on minimizing traffic delay but neglecting the potential exposure to unsafe conditions. We, for the first time, incorporate road safety standards as enforcement to ensure the safety of existing reinforcement learning methods, aiming toward operating intersections with zero collisions. We have proposed a safety-enhanced residual reinforcement learning method (SafeLight) and employed multiple optimization techniques, such as multi-objective loss function and reward shaping for better knowledge integration. Extensive experiments are conducted using both synthetic and real-world benchmark datasets. Results show that our method can significantly reduce collisions while increasing traffic mobility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源