论文标题

交叉模块,联想保形代数的非亚伯扩展和井序

Crossed modules, non-abelian extensions of associative conformal algebras and Wells exact sequences

论文作者

Hou, Bo, Zhao, Jun

论文摘要

在本文中,我们介绍了缔合形式代数的交叉模块,两项强烈同型联想保形代数,并讨论了它们与联想共同代数的第3--霍奇斯柴尔德共同体之间的关系。我们通过引入非亚伯式的共同体来对非亚洲扩展进行分类。我们表明,可以将关联保形代数的非亚伯扩展视为合适的差异分级Lie代数的Maurer-Cartan元素,并证明这种差异分级的Deligne lie代数的Deligne Groupoid与非阿布尔同胞相对应。基于此分类,我们研究了一对自动形态的诱导性,这些自动形态关于联想保串代数的非 - 亚伯延伸,并在关联保形代数的背景下给出了井的基本序列。最后,我们考虑了一对衍生物的扩展性,涉及关联保形代数的阿贝尔扩展,并提供精确的井类型序列。

In this paper, we introduce the notions of crossed module of associative conformal algebras, 2-term strongly homotopy associative conformal algebras, and discuss the relationship between them and the 3-th Hochschild cohomology of associative conformal algebras. We classify the non-abelian extensions by introducing the non-abelian cohomology. We show that non-abelian extensions of an associative conformal algebra can be viewed as Maurer-Cartan elements of a suitable differential graded Lie algebra, and prove that the Deligne groupoid of this differential graded Lie algebra corresponds one to one with the non-abelian cohomology. Based on this classification, we study the inducibility of a pair of automorphisms about a non-abelian extension of associative conformal algebras, and give the fundamental sequence of Wells in the context of associative conformal algebras. Finally, we consider the extensibility of a pair of derivations about an abelian extension of associative conformal algebras, and give an exact sequence of Wells type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源