论文标题
对多余性不确定性量化的低保真模型层次结构的上下文感知学习
Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification
论文作者
论文摘要
多保真蒙特卡洛方法利用低保真性和替代模型来减少方差,即使在数值上模拟使用高保真模型的物理系统的物理系统时,也可以进行可拖动的不确定性量化。这项工作提出了一种情境感知的多保真蒙特卡洛方法,该方法可以最佳地平衡培训低保真模型的成本与蒙特卡洛采样成本。它概括了先前开发的上下文感知的Bi-Fidelity Monte Carlo方法,以多种模型的层次结构以及更通用的低保真模型。当训练低保真模型时,提出的方法考虑了将使用学习的低前生模型的上下文,即用于降低蒙特卡洛估计的差异,这使其可以在培训和采样之间找到最佳的折衷,以最大程度地减少给定计算预算的估计器均值错误的上限。这与传统的替代建模和模型还原技术形成鲜明对比,该技术的主要目标是构建低保真模型,其主要目标是很好地近似高保真模型输出,并且通常忽略了在上游任务中使用的学习模型的上下文。所提出的上下文感知的多保真蒙特卡洛方法适用于广泛类型的低保真模型的层次结构,例如稀疏网格和深网模型。与标准估计器相比,使用陀螺仪仿真代码\ textsc {Gene}进行的数值实验显示了多达两个数量级的速度,当量化融合反应器中的小等离子体中的小规模波动中的不确定性时。这对应于德克萨斯州高级计算中心的Lonestar6超级计算机的一个节点上的一个节点上的运行时从72天减少到大约四个小时。
Multi-fidelity Monte Carlo methods leverage low-fidelity and surrogate models for variance reduction to make tractable uncertainty quantification even when numerically simulating the physical systems of interest with high-fidelity models is computationally expensive. This work proposes a context-aware multi-fidelity Monte Carlo method that optimally balances the costs of training low-fidelity models with the costs of Monte Carlo sampling. It generalizes the previously developed context-aware bi-fidelity Monte Carlo method to hierarchies of multiple models and to more general types of low-fidelity models. When training low-fidelity models, the proposed approach takes into account the context in which the learned low-fidelity models will be used, namely for variance reduction in Monte Carlo estimation, which allows it to find optimal trade-offs between training and sampling to minimize upper bounds of the mean-squared errors of the estimators for given computational budgets. This is in stark contrast to traditional surrogate modeling and model reduction techniques that construct low-fidelity models with the primary goal of approximating well the high-fidelity model outputs and typically ignore the context in which the learned models will be used in upstream tasks. The proposed context-aware multi-fidelity Monte Carlo method applies to hierarchies of a wide range of types of low-fidelity models such as sparse-grid and deep-network models. Numerical experiments with the gyrokinetic simulation code \textsc{Gene} show speedups of up to two orders of magnitude compared to standard estimators when quantifying uncertainties in small-scale fluctuations in confined plasma in fusion reactors. This corresponds to a runtime reduction from 72 days to about four hours on one node of the Lonestar6 supercomputer at the Texas Advanced Computing Center.