论文标题

将最新模型与最大边缘相关性结合起来,以进行几次射击和零照片的多文件摘要

Combining State-of-the-Art Models with Maximal Marginal Relevance for Few-Shot and Zero-Shot Multi-Document Summarization

论文作者

Adams, David, Suri, Gandharv, Chali, Yllias

论文摘要

在自然语言处理中,多文章摘要(MDS)对研究人员提出了许多挑战,而不是单文件摘要(SDS)提出的挑战。这些挑战包括增加的搜索空间和更大的潜力来包含冗余信息。尽管深度学习方法的进步导致了几种能够汇总的高级语言模型的发展,但特定于MDS问题的培训数据的种类仍然相对有限。因此,MDS方法几乎不需要或不需要预处理(分别称为少量射击或零照片)可能是对当前可用工具的有益补充。为了探索一种可能的方法,我们设计了一种使用最大边缘相关性(MMR)组合最先进模型的输出的策略,重点是查询相关性而不是文档多样性。我们基于MMR的方法在当前最新最新的某些方面表现出了改进,从而导致了很少的射击和零击MDS应用程序,同时维持所有可用指标的最先进的输出标准。

In Natural Language Processing, multi-document summarization (MDS) poses many challenges to researchers above those posed by single-document summarization (SDS). These challenges include the increased search space and greater potential for the inclusion of redundant information. While advancements in deep learning approaches have led to the development of several advanced language models capable of summarization, the variety of training data specific to the problem of MDS remains relatively limited. Therefore, MDS approaches which require little to no pretraining, known as few-shot or zero-shot applications, respectively, could be beneficial additions to the current set of tools available in summarization. To explore one possible approach, we devise a strategy for combining state-of-the-art models' outputs using maximal marginal relevance (MMR) with a focus on query relevance rather than document diversity. Our MMR-based approach shows improvement over some aspects of the current state-of-the-art results in both few-shot and zero-shot MDS applications while maintaining a state-of-the-art standard of output by all available metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源