论文标题

AICEF:使用命名实体识别的AI辅助网络练习内容生成框架

AiCEF: An AI-assisted Cyber Exercise Content Generation Framework Using Named Entity Recognition

论文作者

Zacharis, Alexandros, Patsakis, Constantinos

论文摘要

与目标受众的当前威胁相关且最新的内容生成是任何网络安全练习(CSE)成功的关键要素。通过这项工作,我们探讨了将机器学习技术应用于非结构化信息源以生成结构化CSE内容的结果。我们作品的语料库是一大批公开可用的网络安全文章数据集,用于预测未来威胁并形成新的练习场景的骨架。机器学习技术,例如命名实体识别(NER)和主题提取,已被用于根据我们开发的新本体论,命名为网络练习情景本体论(CESO)来构建信息。此外,我们使用与离群值的聚类将生成的提取数据分类为我们本体的对象。图形比较方法用于匹配生成的方案片段,以使已知的威胁参与者的策略有助于在合成文本生成器的帮助下相应地丰富提出的方案。 CESO还被选为通过AI辅助网络锻炼框架(AICEF)表达碎片和最终建议的方案内容的重要方法。我们的方法是通过提供一组生成的方案来进行测试的,以评估一组专家,以作为现实世界意识桌面练习的一部分。

Content generation that is both relevant and up to date with the current threats of the target audience is a critical element in the success of any Cyber Security Exercise (CSE). Through this work, we explore the results of applying machine learning techniques to unstructured information sources to generate structured CSE content. The corpus of our work is a large dataset of publicly available cyber security articles that have been used to predict future threats and to form the skeleton for new exercise scenarios. Machine learning techniques, like named entity recognition (NER) and topic extraction, have been utilised to structure the information based on a novel ontology we developed, named Cyber Exercise Scenario Ontology (CESO). Moreover, we used clustering with outliers to classify the generated extracted data into objects of our ontology. Graph comparison methodologies were used to match generated scenario fragments to known threat actors' tactics and help enrich the proposed scenario accordingly with the help of synthetic text generators. CESO has also been chosen as the prominent way to express both fragments and the final proposed scenario content by our AI-assisted Cyber Exercise Framework (AiCEF). Our methodology was put to test by providing a set of generated scenarios for evaluation to a group of experts to be used as part of a real-world awareness tabletop exercise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源