论文标题
在量身定制的环境中引导的光:从基本方面到应用程序(博士学位论文)
Light guided in tailored environments: from basic aspects to applications (Ph.D. thesis)
论文作者
论文摘要
该论文致力于研究涉及定制结构中的单个光子的量子光学效应。它由六章和一个附录组成。论文的中心部分以标题为“理论背景”的章节开始,作者介绍了理解后续章节所需的关键量子光学概念。下一章致力于讨论具有SPDC过程的非线性晶体中Sellmeier系数的估计。在实验结果的背景下,分析了该方法的准确性和可行性。随后的一章集中于SPDC过程中生成的光子对波函数的数值建模。在本章中,作者介绍了数值预测的结果与在两个不同的实验室设置中获得的实验结果之间的比较。第五章致力于建模弯曲波导的模式,结合了分析考虑和数值建模。通过在comsol中获得的数值模拟来验证结果的正确性。在本章中,作者强调了基础研究的背景:据表明,弯曲的波导是通过与轴向对称性的空间中量子粒子的动力学方程相似的方程式描述的。附录用于圆柱坐标中的差分运算符的形式,分析光纤维中光子传播对光子波函数的影响,以及轴向对称性的二维空间中粒子的schrödinger方程。
This dissertation is dedicated to investigating quantum optical effects involving single photons in tailored structures. It consists of six chapters and an appendix. The central part of the thesis starts with a chapter titled "Theoretical background" where the author introduces key quantum optical concepts needed for understanding the subsequent chapters. The next chapter is devoted to a discussion of the estimation of the Sellmeier coefficient in nonlinear crystals with the SPDC process. The accuracy and feasibility of the method are analysed in the context of the experimental results. The subsequent chapter is focused on the numerical modelling of the photon pair wavefunction generated in the SPDC process. In this chapter, the author presented a comparison between numerically predicted outcomes with the experimental results obtained in two different laboratory setups. The fifth chapter is devoted to modelling the modes of the bent waveguide, combining analytical considerations and numerical modelling. The correctness of the results is verified with numerical simulations obtained in COMSOL. In this chapter author emphasized the context of basic research: It is shown that the bent waveguide is described by equations analogous to the equations of the dynamics of a quantum particle in a space with axial symmetry. The appendix is devoted to the form of the differential operator in cylindrical coordinates, the analysis of the influence of photon propagation in the optical fibre on the photon wave function and the Schrödinger equation for a particle in two-dimensional space with axial symmetry.