论文标题

基于深度学习和建筑工人可穿戴物联网传感器的区块链的隐私数据存储和服务框架

A privacy-preserving data storage and service framework based on deep learning and blockchain for construction workers' wearable IoT sensors

论文作者

Zhou, Xiaoshan, Liao, Pin-Chao

论文摘要

通过可穿戴互联网(IoT)传感器(尤其是脑部计算机界面(BCI))收集的大脑信号是研究最快的研究领域之一。但是,研究主要忽略了收集的个人神经生理数据的安全存储和隐私保护问题。因此,在本文中,我们试图弥合此差距,并提出一个用于实施BCI应用程序的安全隐私协议。我们首先将大脑信号转换为图像,并使用生成的对抗网络来生成合成信号以保护数据隐私。随后,我们将转移学习的范式应用于信号分类。通过案例研究评估了该方法,结果表明,用人为生成的样品增强的实际脑电图数据可提供出色的分类性能。此外,我们提出了一个基于区块链的计划,并开发了以太坊的原型,该计划旨在使存储,查询和共享个人神经生理学数据和分析报告安全和隐私感知。描述了三个主要交易机构的权利 - 建筑工人,BCI服务提供商和项目经理,并讨论了拟议系统的优势。我们认为,本文提供了一个全面的解决方案,可以保护私人数据免受网络攻击,将BCI应用程序开发人员的竞争环境升级,并最终改善行业的专业福祉。

Classifying brain signals collected by wearable Internet of Things (IoT) sensors, especially brain-computer interfaces (BCIs), is one of the fastest-growing areas of research. However, research has mostly ignored the secure storage and privacy protection issues of collected personal neurophysiological data. Therefore, in this article, we try to bridge this gap and propose a secure privacy-preserving protocol for implementing BCI applications. We first transformed brain signals into images and used generative adversarial network to generate synthetic signals to protect data privacy. Subsequently, we applied the paradigm of transfer learning for signal classification. The proposed method was evaluated by a case study and results indicate that real electroencephalogram data augmented with artificially generated samples provide superior classification performance. In addition, we proposed a blockchain-based scheme and developed a prototype on Ethereum, which aims to make storing, querying and sharing personal neurophysiological data and analysis reports secure and privacy-aware. The rights of three main transaction bodies - construction workers, BCI service providers and project managers - are described and the advantages of the proposed system are discussed. We believe this paper provides a well-rounded solution to safeguard private data against cyber-attacks, level the playing field for BCI application developers, and to the end improve professional well-being in the industry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源