论文标题

2D半导体层中的密度调整有效金属胰蛋白过渡:Anderson定位或Wigner结晶

Density-tuned effective metal-insulator transitions in 2D semiconductor layers: Anderson localization or Wigner crystallization

论文作者

Ahn, Seongjin, Sarma, Sankar Das

论文摘要

限制在2D半导体层中的电子(或孔)已成为研究障碍和相互作用效应的模型系统,已有近50年的历史。特别是,强障碍将金属2D载体驱动到低密度的强度局部安德森绝缘子(AI),而在没有(或小)疾病的存在下,原始的2D电子应在低载体密度下将其固化为wigner晶体。由于2D半导体中的疾病主要是由随机充电杂质引起的库仑疾病,因此适用的物理是复杂的,因为载体相互相互作用,并且通过相同的长距离库仑偶联而与随机带电的杂质相互作用。通过批判性理论上使用现实的传输理论对实验传输数据进行深入分析,以计算11个不同的实验样本中载体密度的低温2D电阻率,涵盖了9种不同的材料,我们建立了IOFFE-REGER-REGEL-MOTTIRION的直接连接,以实现IOFFE-REGER-MOTTION的直接连接,以实现2D的统治范围,并实现了2D的直接连接(状态,对于干净的样品,可能导致定位密度足够低,以使过渡似乎是wigner结晶。我们认为,绝缘阶段始终是有效的库仑疾病诱导的局部AI,在低载体密度下可能具有短距离WC样相关性。我们理论上计算的疾病驱动的临界MIT密度与所有2D样品的实验发现一致,即使对于超清洁样品也是如此。特别是,当高密度迁移率输入无穷大时,2D MIT的推断临界密度似乎消失了,这表明运输探针探测了偏定的绝缘基态,而与载体密度可能低的程度无关。

Electrons (or holes) confined in 2D semiconductor layers have served as model systems for studying disorder and interaction effects for almost 50 years. In particular, strong disorder drives the metallic 2D carriers into a strongly localized Anderson insulator (AI) at low densities whereas pristine 2D electrons in the presence of no (or little) disorder should solidify into a Wigner crystal at low carrier densities. Since the disorder in 2D semiconductors is mostly Coulomb disorder arising from random charged impurities, the applicable physics is complex as the carriers interact with each other as well as with the random charged impurities through the same long-range Coulomb coupling. By critically theoretically analyzing the experimental transport data in depth using a realistic transport theory to calculate the low-temperature 2D resistivity as a function of carrier density in 11 different experimental samples covering 9 different materials, we establish, utilizing the Ioffe-Regel-Mott criterion for strong localization, a direct connection between the critical localization density for the 2D metal-insulator transition (MIT) and the sample mobility deep into the metallic state, which for clean samples could lead to a localization density low enough to make the transition appear to be a Wigner crystallization. We believe that the insulating phase is always an effective Coulomb disorder-induced localized AI, which may have short-range WC-like correlations at low carrier densities. Our theoretically calculated disorder-driven critical MIT density agrees with experimental findings in all 2D samples, even for the ultra-clean samples. In particular, the extrapolated critical density for the 2D MIT seems to vanish when the high-density mobility goes to infinity, indicating that transport probes a disorder-localized insulating ground state independent of how low the carrier density might be.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源