论文标题

ACIC:入学控制指令缓存

ACIC: Admission-Controlled Instruction Cache

论文作者

Wang, Yunjin, Chang, Chia-Hao, Sivasubramaniam, Anand, Soundararajan, Niranjan

论文摘要

数据中心工作负载中的前端瓶颈受到了增加的审查,随着代码足迹的不断增长,众多库和操作系统服务的参与以及指令流中的不可预测性。我们对这些工作负载的检查表明,在数据访问中也观察到了指令块的访问中的爆发。这种爆发性在很大程度上是由于空间和短期的时间位置,当单个缓存符合两种形式的局部性时,LRU无法识别和优化。取而代之的是,我们像以前的作品一样,合并一个小型滤波器,以将空间与时间访问分开。但是,简单的分离还不够,我们还需要预测空间位置爆发后是否会继续具有时间位置。 i滤波器和时间局部性预测器的这种组合构成了我们的接收控制指令缓存(ACIC)。 ACIC的表现优于许多最先进的污染减少技术(替换算法,绕过机制,受害者降低),在基准LRU的常规I-CACH(在LRU和Optecter之间的一半差距)之间,平均速度为1.0223加速,跨基线I-CACH(在LRU和Optecter之间桥接一半)。

The front end bottleneck in datacenter workloads has come under increased scrutiny, with the growing code footprint, involvement of numerous libraries and OS services, and the unpredictability in the instruction stream. Our examination of these workloads points to burstiness in accesses to instruction blocks, which has also been observed in data accesses. Such burstiness is largely due to spatial and short-duration temporal localities, that LRU fails to recognize and optimize for, when a single cache caters to both forms of locality. Instead, we incorporate a small i-Filter as in previous works to separate spatial from temporal accesses. However, a simple separation does not suffice, and we additionally need to predict whether the block will continue to have temporal locality, after the burst of spatial locality. This combination of i-Filter and temporal locality predictor constitutes our Admission-Controlled Instruction Cache (ACIC). ACIC outperforms a number of state-of-the-art pollution reduction techniques (replacement algorithms, bypassing mechanisms, victim caches), providing 1.0223 speedup on the average over a baseline LRU based conventional i-cache (bridging over half of the gap between LRU and OPT) across several datacenter workloads.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源